{"title":"Winter cover crops and irrigation alter soil microbial community composition in an arid cropping system","authors":"","doi":"10.1016/j.pedobi.2024.150986","DOIUrl":null,"url":null,"abstract":"<div><p>Cover cropping is a well-established strategy to improve soil health, especially in arid and semi-arid agricultural systems. Benefits to soil health are often mediated via effects of cover crops on soil microbial community structure, function and diversity, crucial for regulating soil biogeochemical cycles, eventually promoting agricultural sustainability. However, limited water availability is a major constraint for both cover crop growth and soil microbial activity. This study sought to characterize and elucidate the shifts in soil microbial community structure in response to different cover crops and differential irrigation treatments using phospholipid fatty acid (PLFA) profiling in southern New Mexico. We tested five cover crop treatments: <em>Pisum sativum</em> (Australian winter pea), <em>Hordeum vulgare</em> cv. Stockford (barley), <em>Brassica juncea</em> cv. Caliente 199 (brown mustard), a three-way mix, and a fallow control — in combination with irrigation treatments of one, two, or three irrigation applications — in a split-plot design over two years. <em>Zea mays</em> (sweet corn) was grown as the summer cash crop. We collected soil samples just after cover crop planting in the fall of 2018, following second year cover crop termination but during <em>Z. mays</em> growth in June 2020, and after the second season of <em>Z. mays</em> growth in October 2020. Differential irrigation treatments did not lead to consistent patterns of change under any cover crop or irrigation treatment. However, PLFA parameters in cover cropped compared to winter fallow plots tended to decrease under one and three irrigations but increased with two irrigations. Changes were more common for bacterial than for fungal PLFA biomarkers, and more common in <em>B. juncea</em> and <em>H. vulgare</em> cover crops than in <em>P. sativa</em> or the mix. It is important to note that, while cover crop effects were inconsistent, cover cropping did lead to some shifts in PLFA biomarkers, even in the short two-year period of cover cropping.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624035078","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cover cropping is a well-established strategy to improve soil health, especially in arid and semi-arid agricultural systems. Benefits to soil health are often mediated via effects of cover crops on soil microbial community structure, function and diversity, crucial for regulating soil biogeochemical cycles, eventually promoting agricultural sustainability. However, limited water availability is a major constraint for both cover crop growth and soil microbial activity. This study sought to characterize and elucidate the shifts in soil microbial community structure in response to different cover crops and differential irrigation treatments using phospholipid fatty acid (PLFA) profiling in southern New Mexico. We tested five cover crop treatments: Pisum sativum (Australian winter pea), Hordeum vulgare cv. Stockford (barley), Brassica juncea cv. Caliente 199 (brown mustard), a three-way mix, and a fallow control — in combination with irrigation treatments of one, two, or three irrigation applications — in a split-plot design over two years. Zea mays (sweet corn) was grown as the summer cash crop. We collected soil samples just after cover crop planting in the fall of 2018, following second year cover crop termination but during Z. mays growth in June 2020, and after the second season of Z. mays growth in October 2020. Differential irrigation treatments did not lead to consistent patterns of change under any cover crop or irrigation treatment. However, PLFA parameters in cover cropped compared to winter fallow plots tended to decrease under one and three irrigations but increased with two irrigations. Changes were more common for bacterial than for fungal PLFA biomarkers, and more common in B. juncea and H. vulgare cover crops than in P. sativa or the mix. It is important to note that, while cover crop effects were inconsistent, cover cropping did lead to some shifts in PLFA biomarkers, even in the short two-year period of cover cropping.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.