IBPF-RRT*: An improved path planning algorithm with Ultra-low number of iterations and stabilized optimal path quality

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-02 DOI:10.1016/j.jksuci.2024.102146
{"title":"IBPF-RRT*: An improved path planning algorithm with Ultra-low number of iterations and stabilized optimal path quality","authors":"","doi":"10.1016/j.jksuci.2024.102146","DOIUrl":null,"url":null,"abstract":"<div><p>Due to its asymptotic optimality, the Rapidly-exploring Random Tree star (RRT*) algorithm is widely used for robotic operations in complex environments. However, the RRT* algorithm suffers from poor path quality, slow convergence, and unstable generation of high-quality paths in the path planning process. This paper proposes an Improved Bi-Tree Obstacle Edge Search Artificial Potential Field RRT* algorithm (IBPF-RRT*) to address these issues. First, based on the RRT* algorithm, this paper proposes a new obstacle edge search artificial potential field strategy (ESAPF), which speeds up the path search and improves the path quality simultaneously. Second, a bi-directional pruning strategy is designed to optimize the bi-directional search tree branch nodes and combine the bi-directional search strategy to reduce the number of iterations for convergence speed significantly. Third, a novel path optimization strategy is proposed, which enables high-quality paths to be generated stably by creating an entirely new node between two path nodes and then optimizing the paths using a pruning strategy based on triangular inequalities. Experimental results in three different scenarios show that the proposed IBPF-RRT* algorithm outperforms other methods in terms of optimal path quality, algorithm stability, and the number of iterations when compared to the RRT*, Q-RRT*, PQ-RRT*, F-RRT* and CCPF-RRT* algorithms, and proves the effectiveness of the proposed three strategies.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002350/pdfft?md5=5a50e8f318b478ea8f87375c2c517352&pid=1-s2.0-S1319157824002350-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002350","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its asymptotic optimality, the Rapidly-exploring Random Tree star (RRT*) algorithm is widely used for robotic operations in complex environments. However, the RRT* algorithm suffers from poor path quality, slow convergence, and unstable generation of high-quality paths in the path planning process. This paper proposes an Improved Bi-Tree Obstacle Edge Search Artificial Potential Field RRT* algorithm (IBPF-RRT*) to address these issues. First, based on the RRT* algorithm, this paper proposes a new obstacle edge search artificial potential field strategy (ESAPF), which speeds up the path search and improves the path quality simultaneously. Second, a bi-directional pruning strategy is designed to optimize the bi-directional search tree branch nodes and combine the bi-directional search strategy to reduce the number of iterations for convergence speed significantly. Third, a novel path optimization strategy is proposed, which enables high-quality paths to be generated stably by creating an entirely new node between two path nodes and then optimizing the paths using a pruning strategy based on triangular inequalities. Experimental results in three different scenarios show that the proposed IBPF-RRT* algorithm outperforms other methods in terms of optimal path quality, algorithm stability, and the number of iterations when compared to the RRT*, Q-RRT*, PQ-RRT*, F-RRT* and CCPF-RRT* algorithms, and proves the effectiveness of the proposed three strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IBPF-RRT*:超低迭代次数和稳定最佳路径质量的改进型路径规划算法
快速探索随机树星(RRT*)算法具有渐进最优性,因此被广泛用于复杂环境中的机器人操作。然而,RRT* 算法在路径规划过程中存在路径质量差、收敛速度慢、高质量路径生成不稳定等问题。本文针对这些问题提出了一种改进的双树障碍物边缘搜索人工势场 RRT* 算法(IBPF-RRT*)。首先,本文在 RRT* 算法的基础上,提出了一种新的障碍物边缘搜索人工势场策略(ESAPF),在加快路径搜索速度的同时提高了路径质量。其次,设计了一种双向剪枝策略,优化双向搜索树分支节点,并结合双向搜索策略大幅减少收敛速度的迭代次数。第三,提出了一种新颖的路径优化策略,通过在两个路径节点之间创建一个全新节点,然后使用基于三角不等式的剪枝策略优化路径,从而稳定生成高质量路径。三种不同场景的实验结果表明,与 RRT*、Q-RRT*、PQ-RRT*、F-RRT* 和 CCPF-RRT* 算法相比,所提出的 IBPF-RRT* 算法在最优路径质量、算法稳定性和迭代次数方面都优于其他方法,证明了所提出的三种策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
Heterogeneous emotional contagion of the cyber–physical society A novel edge intelligence-based solution for safer footpath navigation of visually impaired using computer vision Improving embedding-based link prediction performance using clustering A sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration RAPID: Robust multi-pAtch masker using channel-wise Pooled varIance with two-stage patch Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1