Recurrent neural network-based prediction of O-GlcNAcylation sites in mammalian proteins

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-07-26 DOI:10.1016/j.compchemeng.2024.108818
Pedro Seber, Richard D. Braatz
{"title":"Recurrent neural network-based prediction of O-GlcNAcylation sites in mammalian proteins","authors":"Pedro Seber,&nbsp;Richard D. Braatz","doi":"10.1016/j.compchemeng.2024.108818","DOIUrl":null,"url":null,"abstract":"<div><p>O-GlcNAcylation has the potential to be an important target for therapeutics, but a motif or an algorithm to reliably predict O-GlcNAcylation sites is not available. Current predictive models are insufficient as they fail to generalize, and many are no longer available. This article constructs recurrent neural network models to predict O-GlcNAcylation sites based on protein sequences. Different datasets are evaluated separately and assessed in terms of strengths and issues. Within a given dataset, results are robust to changes in cross-validation and test data as determined by nested validation. The best model achieves an F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> score of 36% (more than 3.5-fold greater than the previous best model) and a Matthews Correlation Coefficient of 35% (more than 4.5-fold greater than the previous best model), and, for the F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> score, 7.6-fold higher than when not using any model. Shapley values are used to interpret the model’s predictions and provide biological insight into O-GlcNAcylation.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108818"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

O-GlcNAcylation has the potential to be an important target for therapeutics, but a motif or an algorithm to reliably predict O-GlcNAcylation sites is not available. Current predictive models are insufficient as they fail to generalize, and many are no longer available. This article constructs recurrent neural network models to predict O-GlcNAcylation sites based on protein sequences. Different datasets are evaluated separately and assessed in terms of strengths and issues. Within a given dataset, results are robust to changes in cross-validation and test data as determined by nested validation. The best model achieves an F1 score of 36% (more than 3.5-fold greater than the previous best model) and a Matthews Correlation Coefficient of 35% (more than 4.5-fold greater than the previous best model), and, for the F1 score, 7.6-fold higher than when not using any model. Shapley values are used to interpret the model’s predictions and provide biological insight into O-GlcNAcylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于循环神经网络预测哺乳动物蛋白质中的 O-GlcNAcylation 位点
O-GlcNAcylation 有可能成为治疗药物的重要靶点,但目前还没有可靠预测 O-GlcNAcylation 位点的主题或算法。目前的预测模型不够充分,因为它们无法推广,而且许多模型已不再可用。本文构建了递归神经网络模型,根据蛋白质序列预测 O-GlcNAcylation 位点。本文分别对不同的数据集进行了评估,并从优势和问题两个方面进行了评价。在给定的数据集中,结果对交叉验证和测试数据的变化是稳健的,这是由嵌套验证决定的。最佳模型的 F1 分数达到 36%(比之前的最佳模型高出 3.5 倍以上),马修斯相关系数达到 35%(比之前的最佳模型高出 4.5 倍以上),F1 分数比不使用任何模型时高出 7.6 倍。Shapley 值用于解释模型的预测结果,并提供有关 O-GlcNAcylation 的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1