{"title":"Recurrent neural network-based prediction of O-GlcNAcylation sites in mammalian proteins","authors":"Pedro Seber, Richard D. Braatz","doi":"10.1016/j.compchemeng.2024.108818","DOIUrl":null,"url":null,"abstract":"<div><p>O-GlcNAcylation has the potential to be an important target for therapeutics, but a motif or an algorithm to reliably predict O-GlcNAcylation sites is not available. Current predictive models are insufficient as they fail to generalize, and many are no longer available. This article constructs recurrent neural network models to predict O-GlcNAcylation sites based on protein sequences. Different datasets are evaluated separately and assessed in terms of strengths and issues. Within a given dataset, results are robust to changes in cross-validation and test data as determined by nested validation. The best model achieves an F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> score of 36% (more than 3.5-fold greater than the previous best model) and a Matthews Correlation Coefficient of 35% (more than 4.5-fold greater than the previous best model), and, for the F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> score, 7.6-fold higher than when not using any model. Shapley values are used to interpret the model’s predictions and provide biological insight into O-GlcNAcylation.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108818"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
O-GlcNAcylation has the potential to be an important target for therapeutics, but a motif or an algorithm to reliably predict O-GlcNAcylation sites is not available. Current predictive models are insufficient as they fail to generalize, and many are no longer available. This article constructs recurrent neural network models to predict O-GlcNAcylation sites based on protein sequences. Different datasets are evaluated separately and assessed in terms of strengths and issues. Within a given dataset, results are robust to changes in cross-validation and test data as determined by nested validation. The best model achieves an F score of 36% (more than 3.5-fold greater than the previous best model) and a Matthews Correlation Coefficient of 35% (more than 4.5-fold greater than the previous best model), and, for the F score, 7.6-fold higher than when not using any model. Shapley values are used to interpret the model’s predictions and provide biological insight into O-GlcNAcylation.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.