Effects of D-Allose on experimental cardiac hypertrophy

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of pharmacological sciences Pub Date : 2024-08-08 DOI:10.1016/j.jphs.2024.08.002
Steeve Akumwami , Asadur Rahman , Masafumi Funamoto , Akram Hossain , Asahiro Morishita , Yasumasa Ikeda , Hiroaki Kitamura , Kento Kitada , Takahisa Noma , Yuichi Ogino , Akira Nishiyama
{"title":"Effects of D-Allose on experimental cardiac hypertrophy","authors":"Steeve Akumwami ,&nbsp;Asadur Rahman ,&nbsp;Masafumi Funamoto ,&nbsp;Akram Hossain ,&nbsp;Asahiro Morishita ,&nbsp;Yasumasa Ikeda ,&nbsp;Hiroaki Kitamura ,&nbsp;Kento Kitada ,&nbsp;Takahisa Noma ,&nbsp;Yuichi Ogino ,&nbsp;Akira Nishiyama","doi":"10.1016/j.jphs.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 142-148"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000586/pdfft?md5=01718de9705446a18a3cda333ebff15e&pid=1-s2.0-S1347861324000586-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000586","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-阿洛糖对实验性心肌肥厚的影响
病理性心肌肥大的特征是由于代谢异常,尤其是与葡萄糖代谢相关的代谢异常导致能量不足,从而引起心肌收缩力下降。在此,我们旨在探索 D-阿洛糖(一种与葡萄糖利用相同转运体的稀有糖类)是否能恢复代谢平衡并逆转心肌肥大。用苯肾上腺素刺激分离的新生大鼠心肌细胞,并同时用 D-Allose 处理 48 小时。D-阿洛糖处理导致心肌细胞体积和心脏重塑标志物明显缩小,同时苯肾上腺素刺激的细胞内葡萄糖水平急剧下降。代谢通量分析进一步揭示了 D-阿洛糖对糖酵解和糖酵解能力的显著抑制作用。此外,在连续注射异丙肾上腺素(ISO)14 天以诱导心肌肥厚的小鼠中,通过饮用水进行 D-Allose 处理可显著减少 ISO 诱导的心肌肥厚和重塑标记物,而在超声心动图分析中观察到的对心室壁厚度的影响微乎其微。这些研究结果表明,D-阿洛糖能够通过降低细胞内葡萄糖通量和抑制糖酵解来减轻心肌细胞肥大的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
104
审稿时长
31 days
期刊介绍: Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.
期刊最新文献
Rehmannioside A promotes the osteoblastic differentiation of MC3T3-E1 cells via the PI3K/AKT signaling pathway and inhibits glucocorticoid-induced bone loss in vivo Targeting TMEM16A ion channels suppresses airway hyperreactivity, inflammation, and remodeling in an experimental Guinea pig asthma model Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain TND1128, a 5-deazaflavin derivative with auto-redox ability, facilitates polarization of mitochondrial membrane potential (ΔΨm) and on-demand ATP synthesis in mice brain slices Analgesic effect of Keishinieppiittokajutsubu on low barometric pressure-induced pain response in arthritic model rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1