{"title":"Feature-consistent coplane-pair correspondence- and fusion-based point cloud registration","authors":"Kuo-Liang Chung, Chia-Chi Hsu, Pei-Hsuan Hsieh","doi":"10.1016/j.patrec.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>It is an important and challenging task to register two point clouds, and the estimated registration solution can be applied in 3D vision. In this paper, an outlier removal method is first proposed to delete redundant coplane-pair correspondences for constructing three feature-consistent coplane-pair correspondence subsets. Next, Rodrigues’ formula and a scoring-based method are adopted to solve the representative registration solution of each correspondence subset. Then, a robust fusion method is proposed to fuse the three representative solutions as the final registration solution. Based on typical testing datasets, comprehensive experimental results demonstrated that with good registration accuracy, our registration algorithm achieves significant execution time reduction effect when compared with the state-of-the-art methods.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 143-149"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002332","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is an important and challenging task to register two point clouds, and the estimated registration solution can be applied in 3D vision. In this paper, an outlier removal method is first proposed to delete redundant coplane-pair correspondences for constructing three feature-consistent coplane-pair correspondence subsets. Next, Rodrigues’ formula and a scoring-based method are adopted to solve the representative registration solution of each correspondence subset. Then, a robust fusion method is proposed to fuse the three representative solutions as the final registration solution. Based on typical testing datasets, comprehensive experimental results demonstrated that with good registration accuracy, our registration algorithm achieves significant execution time reduction effect when compared with the state-of-the-art methods.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.