Romina Eramo , Bilal Said , Marc Oriol , Hugo Bruneliere , Sergio Morales
{"title":"An architecture for model-based and intelligent automation in DevOps","authors":"Romina Eramo , Bilal Said , Marc Oriol , Hugo Bruneliere , Sergio Morales","doi":"10.1016/j.jss.2024.112180","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing complexity of modern systems poses numerous challenges at all stages of system development and operation. Continuous software and system engineering processes, e.g., DevOps, are increasingly adopted and spread across organizations. In parallel, many leading companies have begun to apply artificial intelligence (AI) principles and techniques, including Machine Learning (ML), to improve their products. However, there is no holistic approach that can support and enhance the growing challenges of DevOps. In this paper, we propose a software architecture that provides the foundations of a model-based framework for the development of AI-augmented solutions incorporating methods and tools for continuous software and system engineering and validation. The key characteristic of the proposed architecture is that it allows leveraging the advantages of both AI/ML and Model Driven Engineering (MDE) approaches and techniques in a DevOps context. This architecture has been designed, developed and applied in the context of the European large collaborative project named AIDOaRt. In this paper, we also report on the practical evaluation of this architecture. This evaluation is based on a significant set of technical solutions implemented and applied in the context of different real industrial case studies coming from the AIDOaRt project. Moreover, we analyze the collected results and discuss them according to both architectural and technical challenges we intend to tackle with the proposed architecture.</p></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"217 ","pages":"Article 112180"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0164121224002255/pdfft?md5=d54471e0503d6c6e1beee84152a7b5ac&pid=1-s2.0-S0164121224002255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121224002255","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing complexity of modern systems poses numerous challenges at all stages of system development and operation. Continuous software and system engineering processes, e.g., DevOps, are increasingly adopted and spread across organizations. In parallel, many leading companies have begun to apply artificial intelligence (AI) principles and techniques, including Machine Learning (ML), to improve their products. However, there is no holistic approach that can support and enhance the growing challenges of DevOps. In this paper, we propose a software architecture that provides the foundations of a model-based framework for the development of AI-augmented solutions incorporating methods and tools for continuous software and system engineering and validation. The key characteristic of the proposed architecture is that it allows leveraging the advantages of both AI/ML and Model Driven Engineering (MDE) approaches and techniques in a DevOps context. This architecture has been designed, developed and applied in the context of the European large collaborative project named AIDOaRt. In this paper, we also report on the practical evaluation of this architecture. This evaluation is based on a significant set of technical solutions implemented and applied in the context of different real industrial case studies coming from the AIDOaRt project. Moreover, we analyze the collected results and discuss them according to both architectural and technical challenges we intend to tackle with the proposed architecture.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.