Addressing GAN Training Instabilities via Tunable Classification Losses

Monica Welfert;Gowtham R. Kurri;Kyle Otstot;Lalitha Sankar
{"title":"Addressing GAN Training Instabilities via Tunable Classification Losses","authors":"Monica Welfert;Gowtham R. Kurri;Kyle Otstot;Lalitha Sankar","doi":"10.1109/JSAIT.2024.3415670","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence. In the finite sample and model capacity setting, we define and obtain bounds on estimation and generalization errors. We specialize these results to \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-GANs, defined using \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-loss, a tunable CPE loss family parametrized by \n<inline-formula> <tex-math>$\\alpha \\in (0,\\infty $ </tex-math></inline-formula>\n]. We next introduce a class of dual-objective GANs to address training instabilities of GANs by modeling each player’s objective using \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-loss to obtain \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n-GANs. We show that the resulting non-zero sum game simplifies to minimizing an f-divergence under appropriate conditions on \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n. Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error. Finally, we highlight the value of tuning \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n in alleviating training instabilities for the synthetic 2D Gaussian mixture ring as well as the large publicly available Celeb-A and LSUN Classroom image datasets.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"534-553"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence. In the finite sample and model capacity setting, we define and obtain bounds on estimation and generalization errors. We specialize these results to $\alpha $ -GANs, defined using $\alpha $ -loss, a tunable CPE loss family parametrized by $\alpha \in (0,\infty $ ]. We next introduce a class of dual-objective GANs to address training instabilities of GANs by modeling each player’s objective using $\alpha $ -loss to obtain $(\alpha _{D},\alpha _{G})$ -GANs. We show that the resulting non-zero sum game simplifies to minimizing an f-divergence under appropriate conditions on $(\alpha _{D},\alpha _{G})$ . Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error. Finally, we highlight the value of tuning $(\alpha _{D},\alpha _{G})$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring as well as the large publicly available Celeb-A and LSUN Classroom image datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可调分类损失解决 GAN 训练不稳定性问题
生成式对抗网络(GAN)被模拟为生成器(G)和判别器(D)之间的零和博弈,可以生成具有形式保证的合成数据。注意到 D 是一个分类器,我们首先使用类概率估计(CPE)损失重新表述了 GAN 的价值函数。我们证明了 CPE 损失 GAN 与 f-GAN 之间的双向对应关系,后者最大限度地减小了 f 分歧。我们还证明了所有对称的 f-divergences 在收敛性上是等价的。在有限样本和模型容量设置中,我们定义并获得了估计误差和泛化误差的界限。我们将这些结果专门应用于$\alpha $ -GANs,使用$\alpha $ -loss定义,$\alpha \in (0,\infty $ ]是一个参数为$\alpha \in (0,\infty $ ]的可调CPE损失族。接下来,我们引入了一类双目标 GAN,通过使用 $\alpha $ -loss 对每个参与者的目标进行建模,得到 $(\alpha _{D},\alpha _{G})$ -GAN,从而解决 GAN 的训练不稳定性问题。我们证明,由此产生的非零和博弈在 $(\alpha _{D},\alpha _{G})$ 的适当条件下简化为最小化 f-发散。通过使用 CPE 损失对这一双目标表述进行推广,我们定义并获得了适当定义的估计误差上限。最后,我们强调了调整 $(\alpha _{D},\alpha _{G})$ 在缓解合成二维高斯混合环以及大型公开 Celeb-A 和 LSUN 课堂图像数据集的训练不稳定性方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
2025 Index Journal on Selected Areas in Information Theory Electromagnetic Information Theory in Phase Space On Algebraic Designing of DNA Codes With Biological and Combinatorial Constraints DNA Tails for Molecular Flash Memory Coding Methods for String Reconstruction From Erroneous Prefix-Suffix Compositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1