{"title":"Throughput and Latency Analysis for Line Networks With Outage Links","authors":"Yanyan Dong;Shenghao Yang;Jie Wang;Fan Cheng","doi":"10.1109/JSAIT.2024.3419054","DOIUrl":null,"url":null,"abstract":"Wireless communication links suffer from outage events caused by fading and interference. To facilitate a tractable analysis of network communication throughput and latency, we propose an outage link model to represent a communication link in the slow fading phenomenon. For a line-topology network with outage links, we study three types of intermediate network node schemes: random linear network coding, store-and-forward, and hop-by-hop retransmission. We provide the analytical formulas for the maximum throughputs and the end-to-end latency for each scheme. To gain a more explicit understanding, we perform a scalability analysis of the throughput and latency as the network length increases. We observe that the same order of throughput/latency holds across a wide range of outage functions for each scheme. We illustrate how our exact formulae and scalability results can be applied to compare different schemes.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"464-477"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10571545/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless communication links suffer from outage events caused by fading and interference. To facilitate a tractable analysis of network communication throughput and latency, we propose an outage link model to represent a communication link in the slow fading phenomenon. For a line-topology network with outage links, we study three types of intermediate network node schemes: random linear network coding, store-and-forward, and hop-by-hop retransmission. We provide the analytical formulas for the maximum throughputs and the end-to-end latency for each scheme. To gain a more explicit understanding, we perform a scalability analysis of the throughput and latency as the network length increases. We observe that the same order of throughput/latency holds across a wide range of outage functions for each scheme. We illustrate how our exact formulae and scalability results can be applied to compare different schemes.