JPEG Compliant Compression for DNN Vision

Ahmed H. Salamah;Kaixiang Zheng;Linfeng Ye;En-Hui Yang
{"title":"JPEG Compliant Compression for DNN Vision","authors":"Ahmed H. Salamah;Kaixiang Zheng;Linfeng Ye;En-Hui Yang","doi":"10.1109/JSAIT.2024.3422011","DOIUrl":null,"url":null,"abstract":"Conventional image compression techniques are primarily developed for the human visual system. However, with the extensive use of deep neural networks (DNNs) for computer vision, more and more images will be consumed by DNN-based intelligent machines, which makes it crucial to develop image compression techniques customized for DNN vision while being JPEG compliant. In this paper, we revisit the JPEG rate distortion theory for DNN vision. First, we propose a novel distortion measure, dubbed the sensitivity weighted error (SWE), for DNN vision. Second, we incorporate SWE into the soft decision quantization (SDQ) process of JPEG to trade SWE for rate. Finally, we develop an algorithm, called OptS, for designing optimal quantization tables for the luminance channel and chrominance channels, respectively. To test the performance of the resulting DNN-oriented compression framework and algorithm, experiments of image classification are conducted on the ImageNet dataset for four prevalent DNN models. Results demonstrate that our proposed framework and algorithm achieve better rate-accuracy (R-A) performance than the default JPEG. For some DNN models, our proposed framework and algorithm provide a significant reduction in the compression rate up to 67.84% with no accuracy loss compared to the default JPEG.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"520-533"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10585292/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional image compression techniques are primarily developed for the human visual system. However, with the extensive use of deep neural networks (DNNs) for computer vision, more and more images will be consumed by DNN-based intelligent machines, which makes it crucial to develop image compression techniques customized for DNN vision while being JPEG compliant. In this paper, we revisit the JPEG rate distortion theory for DNN vision. First, we propose a novel distortion measure, dubbed the sensitivity weighted error (SWE), for DNN vision. Second, we incorporate SWE into the soft decision quantization (SDQ) process of JPEG to trade SWE for rate. Finally, we develop an algorithm, called OptS, for designing optimal quantization tables for the luminance channel and chrominance channels, respectively. To test the performance of the resulting DNN-oriented compression framework and algorithm, experiments of image classification are conducted on the ImageNet dataset for four prevalent DNN models. Results demonstrate that our proposed framework and algorithm achieve better rate-accuracy (R-A) performance than the default JPEG. For some DNN models, our proposed framework and algorithm provide a significant reduction in the compression rate up to 67.84% with no accuracy loss compared to the default JPEG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
符合 JPEG 标准的 DNN Vision 压缩技术
传统的图像压缩技术主要是针对人类视觉系统开发的。然而,随着深度神经网络(DNN)在计算机视觉领域的广泛应用,越来越多的图像将被基于 DNN 的智能机器所使用,因此,在符合 JPEG 标准的同时,开发专为 DNN 视觉定制的图像压缩技术至关重要。在本文中,我们重新审视了适用于 DNN 视觉的 JPEG 率失真理论。首先,我们为 DNN 视觉提出了一种新的失真测量方法,称为灵敏度加权误差(SWE)。其次,我们将 SWE 纳入 JPEG 的软决策量化(SDQ)过程,以 SWE 换取速率。最后,我们开发了一种名为 OptS 的算法,用于分别为亮度通道和色度通道设计最佳量化表。为了测试面向 DNN 的压缩框架和算法的性能,我们在 ImageNet 数据集上对四种流行的 DNN 模型进行了图像分类实验。结果表明,与默认的 JPEG 相比,我们提出的框架和算法实现了更好的速率-准确率(R-A)性能。对于某些 DNN 模型,与默认 JPEG 相比,我们提出的框架和算法大大降低了压缩率,最高可达 67.84%,且没有任何精度损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1