Pinar Santemiz, Luuk J. Spreeuwers, Raymond N. J. Veldhuis
{"title":"A Survey on Automatic Face Recognition Using Side-View Face Images","authors":"Pinar Santemiz, Luuk J. Spreeuwers, Raymond N. J. Veldhuis","doi":"10.1049/2024/7886911","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Face recognition from side-view positions poses a considerable challenge in automatic face recognition tasks. Pose variation up to the side-view is an issue of difference in appearance and visibility since only one eye is visible at the side-view poses. Traditionally overlooked, recent advancements in deep learning have brought side-view poses to the forefront of research attention. This survey comprehensively investigates methods addressing pose variations up to side-view and categorizes research efforts into feature-based, image-based, and set-based pose handling. Unlike existing surveys addressing pose variations, our emphasis is specifically on extreme poses. We report numerous promising innovations in each category and contemplate the utilization and challenges associated with side-view. Furthermore, we introduce current datasets and benchmarks, conduct performance evaluations across diverse methods, and explore their unique constraints. Notably, while feature-based methods currently stand as the state-of-the-art, our observations suggest that cross-dataset evaluations, attempted by only a few researchers, produce worse results. Consequently, the challenge of matching arbitrary poses in uncontrolled settings persists.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7886911","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7886911","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Face recognition from side-view positions poses a considerable challenge in automatic face recognition tasks. Pose variation up to the side-view is an issue of difference in appearance and visibility since only one eye is visible at the side-view poses. Traditionally overlooked, recent advancements in deep learning have brought side-view poses to the forefront of research attention. This survey comprehensively investigates methods addressing pose variations up to side-view and categorizes research efforts into feature-based, image-based, and set-based pose handling. Unlike existing surveys addressing pose variations, our emphasis is specifically on extreme poses. We report numerous promising innovations in each category and contemplate the utilization and challenges associated with side-view. Furthermore, we introduce current datasets and benchmarks, conduct performance evaluations across diverse methods, and explore their unique constraints. Notably, while feature-based methods currently stand as the state-of-the-art, our observations suggest that cross-dataset evaluations, attempted by only a few researchers, produce worse results. Consequently, the challenge of matching arbitrary poses in uncontrolled settings persists.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues