Counting connected partitions of graphs

Pub Date : 2024-06-02 DOI:10.1002/jgt.23127
Yair Caro, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"Counting connected partitions of graphs","authors":"Yair Caro,&nbsp;Balázs Patkós,&nbsp;Zsolt Tuza,&nbsp;Máté Vizer","doi":"10.1002/jgt.23127","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> edges determine the number <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $P(G,k)$</annotation>\n </semantics></math> of unordered solutions of positive integers <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{k}{m}_{i}=m$</annotation>\n </semantics></math> such that every <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${m}_{i}$</annotation>\n </semantics></math> is realized by a connected subgraph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${H}_{i}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${m}_{i}$</annotation>\n </semantics></math> edges. We also consider the vertex-partition analogue. We prove various lower bounds on <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $P(G,k)$</annotation>\n </semantics></math> as a function of the number <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> of vertices in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, as a function of the average degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and also as the size <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>M</mi>\n <msub>\n <mi>C</mi>\n <mi>r</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $CM{C}_{r}(G)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-partite connected maximum cuts of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Those three lower bounds are tight up to a multiplicative constant. We also prove that the number <span></span><math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\pi (G,k)$</annotation>\n </semantics></math> of unordered <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-tuples with <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </msubsup>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{k}{n}_{i}=n$</annotation>\n </semantics></math>, that are realizable by vertex partitions into <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> connected parts, is at least <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>d</mi>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({d}^{k-1})$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the theorem of Győri and Lovász, we consider the following problem. For a connected graph G $G$ on n $n$ vertices and m $m$ edges determine the number P ( G , k ) $P(G,k)$ of unordered solutions of positive integers i = 1 k m i = m ${\sum }_{i=1}^{k}{m}_{i}=m$ such that every m i ${m}_{i}$ is realized by a connected subgraph H i ${H}_{i}$ of G $G$ with m i ${m}_{i}$ edges. We also consider the vertex-partition analogue. We prove various lower bounds on P ( G , k ) $P(G,k)$ as a function of the number n $n$ of vertices in G $G$ , as a function of the average degree d $d$ of G $G$ , and also as the size C M C r ( G ) $CM{C}_{r}(G)$ of r $r$ -partite connected maximum cuts of G $G$ . Those three lower bounds are tight up to a multiplicative constant. We also prove that the number π ( G , k ) $\pi (G,k)$ of unordered k $k$ -tuples with i = 1 k n i = n ${\sum }_{i=1}^{k}{n}_{i}=n$ , that are realizable by vertex partitions into k $k$ connected parts, is at least Ω ( d k 1 ) ${\rm{\Omega }}({d}^{k-1})$ .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
计算图的连接分区
受 Győri 和 Lovász 的定理启发,我们考虑了以下问题。对于 n $n$ 个顶点和 m $m$ 条边的连通图 G $G$ 确定正整数无序解的个数 P ( G , k ) $P(G,k)$ ∑ i = 1 k m i = m ${\sum }_{i=1}^{k}{m}_{i}=m$ ,使得每个 m i ${m}_{i}$ 都由 G $G$ 的连通子图 H i ${H}_{i}$ 和 m i ${m}_{i}$ 条边实现。我们还考虑了顶点分区的类似方法。我们证明了 P ( G , k ) $P(G,k)$作为 G $G$ 中顶点数 n $n$ 的函数、G $G$ 的平均度 d $d$ 的函数以及 G $G$ 的 r $r$ 部分连通最大切分的大小 C M C r ( G ) $CM{C}_{r}(G)$的各种下界。这三个下界都很紧,直到一个乘法常数。我们还证明,∑ i = 1 k n i = n ${sum }_{i=1}^{k}{n}_{i}=n$ 的无序 k $k$ 图元的π ( G , k ) $\pi (G,k)$ 数目至少为 Ω ( d k - 1 ) ${\rm{\Omega }}({d}^{k-1})$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1