Mohammed Salah Abood, Hua Wang, Bal S. Virdee, Dongxuan He, Maha Fathy, Abdulganiyu Abdu Yusuf, Omar Jamal, Taha A. Elwi, Mohammad Alibakhshikenari, Lida Kouhalvandi, Ashfaq Ahmad
{"title":"Improved 5G network slicing for enhanced QoS against attack in SDN environment using deep learning","authors":"Mohammed Salah Abood, Hua Wang, Bal S. Virdee, Dongxuan He, Maha Fathy, Abdulganiyu Abdu Yusuf, Omar Jamal, Taha A. Elwi, Mohammad Alibakhshikenari, Lida Kouhalvandi, Ashfaq Ahmad","doi":"10.1049/cmu2.12735","DOIUrl":null,"url":null,"abstract":"<p>Within the evolving landscape of fifth-generation (5G) wireless networks, the introduction of network-slicing protocols has become pivotal, enabling the accommodation of diverse application needs while fortifying defences against potential security breaches. This study endeavours to construct a comprehensive network-slicing model integrated with an attack detection system within the 5G framework. Leveraging software-defined networking (SDN) along with deep learning techniques, this approach seeks to fortify security measures while optimizing network performance. This undertaking introduces network slicing predicated on SDN with the OpenFlow protocol and Ryu control technology, complemented by a neural network model for attack detection using deep learning methodologies. Additionally, the proposed convolutional neural networks-long short-term memory approach demonstrates superiority over conventional ML algorithms, signifying its potential for real-time attack detection. Evaluation of the proposed system using a 5G dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirming the efficacy of the approach. Moreover, network slicing significantly enhances quality of service by segmenting services based on bandwidth. Future research will concentrate on real-world implementation, encompassing diverse dataset evaluations, and assessing the model's adaptability across varied scenarios.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 13","pages":"759-777"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12735","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12735","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Within the evolving landscape of fifth-generation (5G) wireless networks, the introduction of network-slicing protocols has become pivotal, enabling the accommodation of diverse application needs while fortifying defences against potential security breaches. This study endeavours to construct a comprehensive network-slicing model integrated with an attack detection system within the 5G framework. Leveraging software-defined networking (SDN) along with deep learning techniques, this approach seeks to fortify security measures while optimizing network performance. This undertaking introduces network slicing predicated on SDN with the OpenFlow protocol and Ryu control technology, complemented by a neural network model for attack detection using deep learning methodologies. Additionally, the proposed convolutional neural networks-long short-term memory approach demonstrates superiority over conventional ML algorithms, signifying its potential for real-time attack detection. Evaluation of the proposed system using a 5G dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirming the efficacy of the approach. Moreover, network slicing significantly enhances quality of service by segmenting services based on bandwidth. Future research will concentrate on real-world implementation, encompassing diverse dataset evaluations, and assessing the model's adaptability across varied scenarios.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf