Very high cycle fatigue of fiber-reinforced polymer composites: Uniaxial ultrasonic fatigue

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-06-22 DOI:10.1111/ffe.14365
Alireza Behvar, Mahyar Sojoodi, Mohammad Elahinia, Carlo B. Niutta, Andrea Tridello, Davide S. Paolino, Meysam Haghshenas
{"title":"Very high cycle fatigue of fiber-reinforced polymer composites: Uniaxial ultrasonic fatigue","authors":"Alireza Behvar,&nbsp;Mahyar Sojoodi,&nbsp;Mohammad Elahinia,&nbsp;Carlo B. Niutta,&nbsp;Andrea Tridello,&nbsp;Davide S. Paolino,&nbsp;Meysam Haghshenas","doi":"10.1111/ffe.14365","DOIUrl":null,"url":null,"abstract":"<p>This review explores uniaxial ultrasonic fatigue (USF) testing as a common and dependable method for quantifying the extended fatigue life of fiber-reinforced polymer (FRP) composites. The objective is to explain the complexities governing the fatigue life behavior of FRPs, particularly in the realm of very high cycle fatigue (VHCF) where the number of loading cycles exceeds 10<sup>7</sup>. To this end, this review encompasses the analysis of VHCF behavior, including the derivation and interpretation of stress–life (<i>S</i>–<i>N</i>) data, the evaluation of various fatigue damage mechanisms (i.e., controlling mechanisms of crack initiation and propagation) exhibited in FRP composites, and a thorough investigation of the frequency-dependent effects on fatigue responses. Furthermore, this review tries to analyze the microscopic intricacies intrinsic to the VHCF failure of FRP composites, encompassing aspects such as fiber-matrix de-bonding, matrix cracking, and delamination, unveiling their modes and effects in a detailed manner. This review also underscores the pivotal integration of simulations, machine learning, and modeling techniques, emphasizing their crucial role in explaining both macroscopic and microscopic interactions governing the VHCF of FRPs.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 9","pages":"3083-3115"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14365","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14365","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review explores uniaxial ultrasonic fatigue (USF) testing as a common and dependable method for quantifying the extended fatigue life of fiber-reinforced polymer (FRP) composites. The objective is to explain the complexities governing the fatigue life behavior of FRPs, particularly in the realm of very high cycle fatigue (VHCF) where the number of loading cycles exceeds 107. To this end, this review encompasses the analysis of VHCF behavior, including the derivation and interpretation of stress–life (SN) data, the evaluation of various fatigue damage mechanisms (i.e., controlling mechanisms of crack initiation and propagation) exhibited in FRP composites, and a thorough investigation of the frequency-dependent effects on fatigue responses. Furthermore, this review tries to analyze the microscopic intricacies intrinsic to the VHCF failure of FRP composites, encompassing aspects such as fiber-matrix de-bonding, matrix cracking, and delamination, unveiling their modes and effects in a detailed manner. This review also underscores the pivotal integration of simulations, machine learning, and modeling techniques, emphasizing their crucial role in explaining both macroscopic and microscopic interactions governing the VHCF of FRPs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维增强聚合物复合材料的超高循环疲劳:单轴超声波疲劳
本综述探讨了单轴超声波疲劳(USF)测试作为量化纤维增强聚合物(FRP)复合材料延长疲劳寿命的常用可靠方法。其目的是解释 FRP 疲劳寿命行为的复杂性,特别是在加载循环次数超过 107 次的超高循环疲劳 (VHCF) 领域。为此,本综述涵盖了对 VHCF 行为的分析,包括应力寿命(S-N)数据的推导和解释、对玻璃钢复合材料中表现出的各种疲劳损伤机制(即裂纹萌发和扩展的控制机制)的评估,以及对频率对疲劳响应影响的深入研究。此外,本综述还试图分析玻璃纤维复合材料 VHCF 失效的微观内在复杂性,包括纤维-基体脱粘结、基体开裂和分层等方面,详细揭示其模式和影响。本综述还强调了模拟、机器学习和建模技术的重要整合,强调了它们在解释玻璃钢 VHCF 的宏观和微观相互作用方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Study on the Deformation and Energy Evolution of Skarn With Marble Band of Different Orientations Under Cyclic Loading: A Lab-Scale Study Competitive Fracture Mechanism and Microstructure-Related Life Assessment of GH4169 Superalloy in High and Very High Cycle Fatigue Regimes Natural Seawater Impact on Crack Propagation and Fatigue Behavior of Welded Nickel Aluminum Bronze Phase field numerical strategies for positive volumetric strain energy fractures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1