Blockchain-Based Piecewise Regressive Kupyna Cryptography for Secure Cloud Services

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2024-07-31 DOI:10.1049/2024/6863755
Selvakumar Shanmugam, Rajesh Natarajan, Gururaj H. L., Francesco Flammini, Badria Sulaiman Alfurhood, Anitha Premkumar
{"title":"Blockchain-Based Piecewise Regressive Kupyna Cryptography for Secure Cloud Services","authors":"Selvakumar Shanmugam,&nbsp;Rajesh Natarajan,&nbsp;Gururaj H. L.,&nbsp;Francesco Flammini,&nbsp;Badria Sulaiman Alfurhood,&nbsp;Anitha Premkumar","doi":"10.1049/2024/6863755","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Cloud computing (CC) is a network-based concept where users access data at a specific time and place. The CC comprises servers, storage, databases, networking, software, analytics, and intelligence. Cloud security is the cybersecurity authority dedicated to securing cloud computing systems. It includes keeping data private and safe across online-based infrastructure, applications, and platforms. Securing these systems involves the efforts of cloud providers and the clients that use them, whether an individual, small-to-medium business, or enterprise uses. Security is essential for protecting data and cloud resources from malicious activity. A cloud service provider is utilized to provide secure data storage services. Data integrity is a critical issue in cloud computing. However, using data storage services securely and ensuring data integrity in these cloud servers remain an issue for cloud users. We introduce a unique piecewise regressive Kupyna cryptographic hash blockchain (PRKCHB) technique to secure cloud services with higher data integrity to solve these issues. The proposed PRKCHB method involves user registration, cryptographic hash blockchain, and regression analysis. Initially, the registration process for each cloud user is performed. After registering user particulars, Davies–Meyer Kupyna’s cryptographic hash blockchain generates the hash value of data in each block. When a user requests data from the server, a piecewise regression function is used to validate their identity. Furthermore, the Gaussian kernel function recognizes authorized or unauthorized users for secure cloud information transmission. The regression function results in original data by enhanced integrity in the cloud. An analysis of the proposed PRKCHB technique evaluates different existing methods implemented in Python. The results contain different metrics: data confidentiality rate, data integrity rate, authentication time, storage overhead, and execution time. Compared to conventional techniques, findings corroborate the assertion that the proposed PRKCHB technique improves data confidentiality and integrity by up to 9% and 9% while lowering storage overhead, authentication time, and execution time by 10%, 12%, and 12%.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6863755","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6863755","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing (CC) is a network-based concept where users access data at a specific time and place. The CC comprises servers, storage, databases, networking, software, analytics, and intelligence. Cloud security is the cybersecurity authority dedicated to securing cloud computing systems. It includes keeping data private and safe across online-based infrastructure, applications, and platforms. Securing these systems involves the efforts of cloud providers and the clients that use them, whether an individual, small-to-medium business, or enterprise uses. Security is essential for protecting data and cloud resources from malicious activity. A cloud service provider is utilized to provide secure data storage services. Data integrity is a critical issue in cloud computing. However, using data storage services securely and ensuring data integrity in these cloud servers remain an issue for cloud users. We introduce a unique piecewise regressive Kupyna cryptographic hash blockchain (PRKCHB) technique to secure cloud services with higher data integrity to solve these issues. The proposed PRKCHB method involves user registration, cryptographic hash blockchain, and regression analysis. Initially, the registration process for each cloud user is performed. After registering user particulars, Davies–Meyer Kupyna’s cryptographic hash blockchain generates the hash value of data in each block. When a user requests data from the server, a piecewise regression function is used to validate their identity. Furthermore, the Gaussian kernel function recognizes authorized or unauthorized users for secure cloud information transmission. The regression function results in original data by enhanced integrity in the cloud. An analysis of the proposed PRKCHB technique evaluates different existing methods implemented in Python. The results contain different metrics: data confidentiality rate, data integrity rate, authentication time, storage overhead, and execution time. Compared to conventional techniques, findings corroborate the assertion that the proposed PRKCHB technique improves data confidentiality and integrity by up to 9% and 9% while lowering storage overhead, authentication time, and execution time by 10%, 12%, and 12%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区块链的片式递归库普纳加密法实现安全云服务
云计算(CC)是一个基于网络的概念,用户可在特定的时间和地点访问数据。云计算包括服务器、存储、数据库、网络、软件、分析和智能。云安全是专门保障云计算系统安全的网络安全机构。它包括在基于网络的基础设施、应用程序和平台上保持数据的私密性和安全性。确保这些系统的安全需要云提供商和使用这些系统的客户(无论是个人、中小型企业还是企业用户)的共同努力。安全对于保护数据和云资源免受恶意活动侵害至关重要。云服务提供商被用来提供安全的数据存储服务。数据完整性是云计算中的一个关键问题。然而,如何安全地使用数据存储服务并确保这些云服务器中的数据完整性仍然是云用户面临的一个问题。为了解决这些问题,我们引入了一种独特的片式递归库皮纳加密哈希区块链(PRKCHB)技术,以确保云服务具有更高的数据完整性。所提出的 PRKCHB 方法包括用户注册、加密哈希区块链和回归分析。首先,每个云用户都要进行注册。注册用户信息后,Davies-Meyer Kupyna 的加密哈希区块链会生成每个区块中数据的哈希值。当用户向服务器请求数据时,将使用片断回归函数来验证其身份。此外,高斯核函数还能识别授权或未授权用户,以确保云信息传输的安全性。回归函数通过增强云中的完整性来获得原始数据。对所提出的 PRKCHB 技术的分析评估了用 Python 实现的不同现有方法。结果包含不同的指标:数据保密率、数据完整性率、验证时间、存储开销和执行时间。与传统技术相比,研究结果证实,所提出的 PRKCHB 技术将数据保密性和完整性提高了 9% 和 9%,同时将存储开销、验证时间和执行时间分别降低了 10%、12% 和 12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1