A strategy to drive nanoflow using Laplace pressure and the end effect

Droplet Pub Date : 2024-06-17 DOI:10.1002/dro2.136
Keli Zhang, Hengyu Xu, Jingcun Fan, Cancan Ouyang, Hengan Wu, Fengchao Wang
{"title":"A strategy to drive nanoflow using Laplace pressure and the end effect","authors":"Keli Zhang,&nbsp;Hengyu Xu,&nbsp;Jingcun Fan,&nbsp;Cancan Ouyang,&nbsp;Hengan Wu,&nbsp;Fengchao Wang","doi":"10.1002/dro2.136","DOIUrl":null,"url":null,"abstract":"<p>Nanofluidics holds significant potential across diverse fields, including energy, environment, and biotechnology. Nevertheless, the fundamental driving mechanisms on the nanoscale remain elusive, underscoring the crucial importance of exploring nanoscale driving techniques. This study introduces a Laplace pressure-driven flow method that is accurately controlled and does not interfere with interfacial dynamics. Here, we first confirmed the applicability of the Young–Laplace equation for droplet radii ranging from 1 to 10 nm. Following that, a steady-state liquid flow within the carbon nanotube was attained in molecular dynamics simulations. This flow was driven by the Laplace pressure difference across the nanochannel, which originated from two liquid droplets of unequal sizes positioned at the channel ends, respectively. Furthermore, we employ the Sampson formula to rectify the end effect, ultimately deriving a theoretical model to quantify the flow rate, which satisfactorily describes the molecular dynamics simulation results. This research enhances our understanding on the driving mechanisms of nanoflows, providing valuable insights for further exploration in fluid dynamics on the nanoscale.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.136","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluidics holds significant potential across diverse fields, including energy, environment, and biotechnology. Nevertheless, the fundamental driving mechanisms on the nanoscale remain elusive, underscoring the crucial importance of exploring nanoscale driving techniques. This study introduces a Laplace pressure-driven flow method that is accurately controlled and does not interfere with interfacial dynamics. Here, we first confirmed the applicability of the Young–Laplace equation for droplet radii ranging from 1 to 10 nm. Following that, a steady-state liquid flow within the carbon nanotube was attained in molecular dynamics simulations. This flow was driven by the Laplace pressure difference across the nanochannel, which originated from two liquid droplets of unequal sizes positioned at the channel ends, respectively. Furthermore, we employ the Sampson formula to rectify the end effect, ultimately deriving a theoretical model to quantify the flow rate, which satisfactorily describes the molecular dynamics simulation results. This research enhances our understanding on the driving mechanisms of nanoflows, providing valuable insights for further exploration in fluid dynamics on the nanoscale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拉普拉斯压力和终端效应驱动纳米流的策略
纳米流体技术在能源、环境和生物技术等多个领域具有巨大潜力。然而,纳米尺度上的基本驱动机制仍然难以捉摸,这凸显了探索纳米尺度驱动技术的极端重要性。本研究介绍了一种拉普拉斯压力驱动流动方法,该方法可精确控制,且不会干扰界面动力学。在这里,我们首先证实了 Young-Laplace 方程适用于 1 到 10 nm 的液滴半径。随后,在分子动力学模拟中实现了碳纳米管内的稳态液流。这种流动是由纳米通道上的拉普拉斯压差驱动的,而拉普拉斯压差来自分别位于通道两端的两个大小不等的液滴。此外,我们还利用桑普森公式修正了末端效应,最终推导出一个量化流速的理论模型,该模型能令人满意地描述分子动力学模拟结果。这项研究加深了我们对纳米流驱动机制的理解,为进一步探索纳米尺度的流体动力学提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover, Volume 3, Number 4, October 2024 Inside Back Cover, Volume 3, Number 4, October 2024 Back Cover, Volume 3, Number 4, October 2024 Inside Front Cover, Volume 3, Number 4, October 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1