{"title":"Quantitative upper bounds related to an isogeny criterion for elliptic curves","authors":"Alina Carmen Cojocaru, Auden Hinz, Tian Wang","doi":"10.1112/blms.13091","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> elliptic curves defined over a number field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, without complex multiplication, we consider the function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\n </semantics></math> counting nonzero prime ideals <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$\\mathfrak {p}$</annotation>\n </semantics></math> of the ring of integers of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, of good reduction for <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math>, of norm at most <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, and for which the Frobenius fields <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>π</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(\\pi _{\\mathfrak {p}}(E_1))$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>π</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(\\pi _{\\mathfrak {p}}(E_2))$</annotation>\n </semantics></math> are equal. Motivated by an isogeny criterion of Kulkarni, Patankar, and Rajan, which states that <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> are not potentially isogenous if and only if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mo>o</mo>\n <mfenced>\n <mfrac>\n <mi>x</mi>\n <mrow>\n <mi>log</mi>\n <mi>x</mi>\n </mrow>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) = \\operatorname{o}\\left(\\frac{x}{\\operatorname{log}x}\\right)$</annotation>\n </semantics></math>, we investigate the growth in <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\n </semantics></math>. We prove that if <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> are not potentially isogenous, then there exist positive constants <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa (E_1, E_2, K)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>κ</mi>\n <mo>′</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa ^{\\prime }(E_1, E_2, K)$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>κ</mi>\n <mrow>\n <mo>′</mo>\n <mo>′</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa ^{\\prime \\prime }(E_1, E_2, K)$</annotation>\n </semantics></math> such that the following bounds hold: (i) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <mi>κ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mrow>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mn>9</mn>\n </mfrac>\n </msup>\n </mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>19</mn>\n <mn>18</mn>\n </mfrac>\n </msup>\n </mfrac>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &lt; \\kappa (E_1, E_2, K) \\frac{ x (\\operatorname{log}\\operatorname{log}x)^{\\frac{1}{9}}}{ (\\operatorname{log}x)^{\\frac{19}{18}}}$</annotation>\n </semantics></math>; (ii) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <msup>\n <mi>κ</mi>\n <mo>′</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <msup>\n <mi>x</mi>\n <mfrac>\n <mn>6</mn>\n <mn>7</mn>\n </mfrac>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>5</mn>\n <mn>7</mn>\n </mfrac>\n </msup>\n </mfrac>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &lt; \\kappa ^{\\prime }(E_1, E_2, K) \\frac{ x^{\\frac{6}{7}}}{ (\\operatorname{log}x)^{\\frac{5}{7}}}$</annotation>\n </semantics></math> under the Generalized Riemann Hypothesis for Dedekind zeta functions (GRH); (iii) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo><</mo>\n <msup>\n <mi>κ</mi>\n <mrow>\n <mo>′</mo>\n <mo>′</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>x</mi>\n <mfrac>\n <mn>2</mn>\n <mn>3</mn>\n </mfrac>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mn>3</mn>\n </mfrac>\n </msup>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &lt; \\kappa ^{\\prime \\prime }(E_1, E_2, K) x^{\\frac{2}{3}} (\\operatorname{log}x)^{\\frac{1}{3}}$</annotation>\n </semantics></math> under GRH, Artin's Holomorphy Conjecture for the Artin <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>-functions of number field extensions, and a Pair Correlation Conjecture for the zeros of the Artin <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>-functions of number field extensions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2661-2679"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For and elliptic curves defined over a number field , without complex multiplication, we consider the function counting nonzero prime ideals of the ring of integers of , of good reduction for and , of norm at most , and for which the Frobenius fields and are equal. Motivated by an isogeny criterion of Kulkarni, Patankar, and Rajan, which states that and are not potentially isogenous if and only if , we investigate the growth in of . We prove that if and are not potentially isogenous, then there exist positive constants , , and such that the following bounds hold: (i) ; (ii) under the Generalized Riemann Hypothesis for Dedekind zeta functions (GRH); (iii) under GRH, Artin's Holomorphy Conjecture for the Artin -functions of number field extensions, and a Pair Correlation Conjecture for the zeros of the Artin -functions of number field extensions.
For E 1 $E_1$ and E 2 $E_2$ elliptic curves defined over a number field K $K$ , without complex multiplication, we consider the function F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ counting nonzero prime ideals p $\mathfrak {p}$ of the ring of integers of K $K$ , of good reduction for E 1 $E_1$ and E 2 $E_2$ , of norm at most x $x$ , and for which the Frobenius fields Q ( π p ( E 1 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_1))$ and Q ( π p ( E 2 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_2))$ are equal.受 Kulkarni、Patankar 和 Rajan 的同源准则的启发,该准则指出,当且仅当 F E 1 , E 2 ( x ) = o x log x $\{mathcal {F}}_{E_1, E_2}(x) = \operatorname{o}\left(\frac{x}\{operatorname{log}x}\right)$ 时,E 1 $E_1$ 和 E 2 $E_2$ 才可能不是同源的,因此我们研究 F E 1 , E 2 ( x ) ${mathcal {F}}_{E_1, E_2}(x)$ 在 x $x$ 中的增长。 For E 1 $E_1$ and E 2 $E_2$ elliptic curves defined over a number field K $K$ , without complex multiplication, we consider the function F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ counting nonzero prime ideals p $\mathfrak {p}$ of the ring of integers of K $K$ , of good reduction for E 1 $E_1$ and E 2 $E_2$ , of norm at most x $x$ , and for which the Frobenius fields Q ( π p ( E 1 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_1))$ and Q ( π p ( E 2 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_2))$ are equal.库尔卡尼、帕坦卡尔和拉詹的同源准则指出,当且仅当 F E 1 , E 2 ( x ) = o x log x $\{mathcal {F}}_{E_1, E_2}(x) = \operatorname{o}\left(\frac{x}\{operatorname{log}x}\right)$ 时,E 1 $E_1$ 和 E 2 $E_2$ 才可能不是同源的,受此激励,我们研究了 F E 1 , E 2 ( x ) ${mathcal {F}}_{E_1, E_2}(x)$ 在 x $x$ 中的增长。我们证明,如果 E 1 $E_1$ 和 E 2 $E_2$