On the Limitations of Univariate Grey Prediction Models: Findings and Failures

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2024-07-25 DOI:10.1155/2024/9961208
Aubin Kinfack Jeutsa, Marius Tony Kibong, Benjamin Salomon Diboma, Flavian Emmanuel Sapnken, Prosper Gopdjim Noumo, Jean Gaston Tamba
{"title":"On the Limitations of Univariate Grey Prediction Models: Findings and Failures","authors":"Aubin Kinfack Jeutsa,&nbsp;Marius Tony Kibong,&nbsp;Benjamin Salomon Diboma,&nbsp;Flavian Emmanuel Sapnken,&nbsp;Prosper Gopdjim Noumo,&nbsp;Jean Gaston Tamba","doi":"10.1155/2024/9961208","DOIUrl":null,"url":null,"abstract":"<p>Grey systems theory can be used to predict the evolution of a system with insufficient information. Unfortunately, the most used version of the grey model (GM), namely, GM(1,1), works best when the system series have an increasing exponential rate. In any other case, the GM(1,1) produces inaccurate predictions. In this paper, we examine the mathematical formulation of the conventional GM(1,1) in order to propose a new GM that addresses its shortcomings through a new time response function. Examples are presented to demonstrate the flexibility and accuracy of the new model when implemented with series of various natures. Comparisons with other intelligent GM(1,1) show that the proposed model performs better than the reference models.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9961208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9961208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Grey systems theory can be used to predict the evolution of a system with insufficient information. Unfortunately, the most used version of the grey model (GM), namely, GM(1,1), works best when the system series have an increasing exponential rate. In any other case, the GM(1,1) produces inaccurate predictions. In this paper, we examine the mathematical formulation of the conventional GM(1,1) in order to propose a new GM that addresses its shortcomings through a new time response function. Examples are presented to demonstrate the flexibility and accuracy of the new model when implemented with series of various natures. Comparisons with other intelligent GM(1,1) show that the proposed model performs better than the reference models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单变量灰色预测模型的局限性:发现与失败
灰色系统理论可用于在信息不足的情况下预测系统的演变。遗憾的是,最常用的灰色模型(GM)版本,即 GM(1,1),在系统序列具有指数递增率时效果最佳。在其他任何情况下,GM(1,1) 都会产生不准确的预测。在本文中,我们研究了传统 GM(1,1) 的数学公式,从而提出了一种新的 GM,通过新的时间响应函数来解决其缺点。本文举例说明了新模型在使用不同性质的序列时的灵活性和准确性。与其他智能 GM(1,1) 的比较表明,所提出的模型比参考模型的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques On the Limitations of Univariate Grey Prediction Models: Findings and Failures Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1