Rachel M. Pilla, Chloe S. Faehndrich, Allison M. Fortner, R. Trent Jett, Michael W. Jones, Nikki J. Jones, Jana R. Phillips, Carly H. Hansen, Bilal Iftikhar, Henriette I. Jager, Paul G. Matson, Natalie A. Griffiths
{"title":"Shifts in Carbon Emissions Versus Sequestration From Hydropower Reservoirs in the Southeastern United States","authors":"Rachel M. Pilla, Chloe S. Faehndrich, Allison M. Fortner, R. Trent Jett, Michael W. Jones, Nikki J. Jones, Jana R. Phillips, Carly H. Hansen, Bilal Iftikhar, Henriette I. Jager, Paul G. Matson, Natalie A. Griffiths","doi":"10.1029/2023JG007580","DOIUrl":null,"url":null,"abstract":"<p>Reservoirs are a significant source of carbon (C) to the atmosphere, but their emission rates vary in space and time. We compared C emissions via diffusive and ebullitive pathways at several stations in six large hydropower reservoirs in the southeastern US that were previously sampled in summer 2012. We found that carbon dioxide (CO<sub>2</sub>) diffusion was the dominant flux pathway during 2012 and 2022, with only three exceptions where methane (CH<sub>4</sub>) diffusion or CH<sub>4</sub> ebullition dominated. CH<sub>4</sub> diffusion rates were positively associated with water temperature. However, we found no clear predictors of CH<sub>4</sub> ebullition, which had extremely high variability, with rates ranging from 0 to 739 mg C m<sup>−2</sup> day<sup>−1</sup>. For CO<sub>2</sub> diffusion, the direction of the flux shifted between 2012 and 2022, where all but three stations across all reservoirs emitted CO<sub>2</sub> in summer 2012, but every station sequestered CO<sub>2</sub> in summer 2022. Here, indicators of greater algal production were associated with CO<sub>2</sub> sequestration, including surface chlorophyll-<i>a</i> concentration, surface dissolved oxygen saturation, and pH. Additional sampling campaigns outside the summer season highlighted the importance of seasonal phenology in primary production on the direction of CO<sub>2</sub> diffusive fluxes, which shifted to positive CO<sub>2</sub> fluxes by the end of August as productivity decreased. Our results demonstrate the importance of capturing CO<sub>2</sub> sequestration in field and modeling measurements and understanding the seasonal drivers of these estimates. Measuring C emissions from multiple pathways in reservoirs and understanding their spatiotemporal responses and variability are vital to reducing uncertainties in global upscaling efforts.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007580","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoirs are a significant source of carbon (C) to the atmosphere, but their emission rates vary in space and time. We compared C emissions via diffusive and ebullitive pathways at several stations in six large hydropower reservoirs in the southeastern US that were previously sampled in summer 2012. We found that carbon dioxide (CO2) diffusion was the dominant flux pathway during 2012 and 2022, with only three exceptions where methane (CH4) diffusion or CH4 ebullition dominated. CH4 diffusion rates were positively associated with water temperature. However, we found no clear predictors of CH4 ebullition, which had extremely high variability, with rates ranging from 0 to 739 mg C m−2 day−1. For CO2 diffusion, the direction of the flux shifted between 2012 and 2022, where all but three stations across all reservoirs emitted CO2 in summer 2012, but every station sequestered CO2 in summer 2022. Here, indicators of greater algal production were associated with CO2 sequestration, including surface chlorophyll-a concentration, surface dissolved oxygen saturation, and pH. Additional sampling campaigns outside the summer season highlighted the importance of seasonal phenology in primary production on the direction of CO2 diffusive fluxes, which shifted to positive CO2 fluxes by the end of August as productivity decreased. Our results demonstrate the importance of capturing CO2 sequestration in field and modeling measurements and understanding the seasonal drivers of these estimates. Measuring C emissions from multiple pathways in reservoirs and understanding their spatiotemporal responses and variability are vital to reducing uncertainties in global upscaling efforts.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology