A Comparison of Diagnostics for AMOC Heat Transport Applied to the CESM Large Ensemble

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-30 DOI:10.1029/2023MS003978
C Spencer Jones, Scout Jiang, Ryan P. Abernathey
{"title":"A Comparison of Diagnostics for AMOC Heat Transport Applied to the CESM Large Ensemble","authors":"C Spencer Jones,&nbsp;Scout Jiang,&nbsp;Ryan P. Abernathey","doi":"10.1029/2023MS003978","DOIUrl":null,"url":null,"abstract":"<p>Atlantic time-mean heat transport is northward at all latitudes and exhibits strong multidecadal variability between about 30°N and 55°N. Atlantic heat transport variability influences many aspects of the climate system, including regional surface temperatures, subpolar heat content, Arctic sea-ice concentration and tropical precipitation patterns. Atlantic heat transport and heat transport variability are commonly partitioned into two components: the heat transport by the Atlantic Meridional Overturning Circulation (AMOC) and the heat transport by the gyres. In this paper we compare four different methods for performing this partition, and we apply these methods to the Community Earth System Model Large Ensemble at 34°N, 26°N and 5°S. We discuss the strengths and weaknesses of each method. The four methods all give significantly different estimates for the proportion of the time-mean heat transport performed by AMOC. One of these methods is a new physically-motivated method based on the pathway of the northward-flowing part of AMOC. This paper presents a preliminary version of our method that works only when the AMOC follows the western boundary of the basin. All the methods agree that at 26°N, 80%–100% of heat transport variability at 2–10 years timescales is performed by AMOC, but there is more disagreement between methods in attributing multidecadal variability, with some methods showing a compensation between the AMOC and gyre heat transport variability.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003978","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003978","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atlantic time-mean heat transport is northward at all latitudes and exhibits strong multidecadal variability between about 30°N and 55°N. Atlantic heat transport variability influences many aspects of the climate system, including regional surface temperatures, subpolar heat content, Arctic sea-ice concentration and tropical precipitation patterns. Atlantic heat transport and heat transport variability are commonly partitioned into two components: the heat transport by the Atlantic Meridional Overturning Circulation (AMOC) and the heat transport by the gyres. In this paper we compare four different methods for performing this partition, and we apply these methods to the Community Earth System Model Large Ensemble at 34°N, 26°N and 5°S. We discuss the strengths and weaknesses of each method. The four methods all give significantly different estimates for the proportion of the time-mean heat transport performed by AMOC. One of these methods is a new physically-motivated method based on the pathway of the northward-flowing part of AMOC. This paper presents a preliminary version of our method that works only when the AMOC follows the western boundary of the basin. All the methods agree that at 26°N, 80%–100% of heat transport variability at 2–10 years timescales is performed by AMOC, but there is more disagreement between methods in attributing multidecadal variability, with some methods showing a compensation between the AMOC and gyre heat transport variability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于 CESM 大型集合的 AMOC 热传输诊断比较
大西洋的时间平均热量输送在所有纬度都是向北的,在大约北纬 30 度到 55 度之间表现出强烈的多年代变异性。大西洋热输送变率影响气候系统的许多方面,包括区域表面温度、副极地热含量、北极海冰浓度和热带降水模式。大西洋热输送和热输送变率通常分为两部分:大西洋经向翻转环流(AMOC)的热输送和涡旋的热输送。在本文中,我们比较了进行这种划分的四种不同方法,并将这些方法应用于北纬 34°、北纬 26°和南纬 5°的群落地球系统模式大型集合。我们讨论了每种方法的优缺点。这四种方法对 AMOC 在时间平均热量传输中所占比例的估算都有很大不同。其中一种方法是基于 AMOC 北流部分路径的新物理方法。本文介绍了我们方法的初步版本,该方法仅在 AMOC 沿着盆地西部边界运行时有效。所有方法都一致认为,在北纬 26°,2-10 年时间尺度上 80%-100%的热传输变化是由 AMOC 引起的,但在归因于多年代变率方面,不同方法之间存在更多分歧,一些方法显示 AMOC 与回旋热传输变率之间存在补偿关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1