Correlation-Guided Distribution and Geometry Alignments for Heterogeneous Domain Adaptation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-06-07 DOI:10.1109/TMM.2024.3411316
Wai Keung Wong;Dewei Lin;Yuwu Lu;Jiajun Wen;Zhihui Lai;Xuelong Li
{"title":"Correlation-Guided Distribution and Geometry Alignments for Heterogeneous Domain Adaptation","authors":"Wai Keung Wong;Dewei Lin;Yuwu Lu;Jiajun Wen;Zhihui Lai;Xuelong Li","doi":"10.1109/TMM.2024.3411316","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach named correlation-guided distribution and geometry alignments (CDGA) for heterogeneous domain adaptation. Unlike existing methods that typically combine feature alignment and domain alignment into a single objective function, our proposed CDGA separates the two alignments into distinct steps. The two adaptation steps are: paired canonical correlation analysis (PCCA) and distribution and geometry alignments (DGA). In the PCCA step, CDGA focuses on maximizing the within-category correlation between source and target samples to produce the dimension-aligned feature representations for the next adaptation step. In the DGA step, CDGA is responsible for learning a classifier that incorporates both distribution and geometry alignments. Furthermore, during this step, the highly confident pseudo labeled samples are carefully selected for the next iteration of PCCA, establishing a beneficial coupling between PCCA and DGA to improve the adaptation performance in an iterative manner. Experimental results on various visual cross-domain benchmarks demonstrate that CDGA achieves remarkable performance compared to the existing shallow heterogeneous domain adaptation methods and even exhibits superiority over the state-of-the-art neural network-based approaches.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10741-10754"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10552106/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel approach named correlation-guided distribution and geometry alignments (CDGA) for heterogeneous domain adaptation. Unlike existing methods that typically combine feature alignment and domain alignment into a single objective function, our proposed CDGA separates the two alignments into distinct steps. The two adaptation steps are: paired canonical correlation analysis (PCCA) and distribution and geometry alignments (DGA). In the PCCA step, CDGA focuses on maximizing the within-category correlation between source and target samples to produce the dimension-aligned feature representations for the next adaptation step. In the DGA step, CDGA is responsible for learning a classifier that incorporates both distribution and geometry alignments. Furthermore, during this step, the highly confident pseudo labeled samples are carefully selected for the next iteration of PCCA, establishing a beneficial coupling between PCCA and DGA to improve the adaptation performance in an iterative manner. Experimental results on various visual cross-domain benchmarks demonstrate that CDGA achieves remarkable performance compared to the existing shallow heterogeneous domain adaptation methods and even exhibits superiority over the state-of-the-art neural network-based approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相关性指导下的分布和几何对齐,实现异构领域自适应
在本文中,我们提出了一种名为 "相关性引导的分布和几何对齐(CDGA)"的用于异构领域适应的新方法。现有方法通常将特征对齐和域对齐合并为一个目标函数,与此不同,我们提出的 CDGA 将这两种对齐分为不同的步骤。这两个适应步骤是:配对典型相关分析(PCCA)和分布与几何配准(DGA)。在 PCCA 步骤中,CDGA 专注于最大化源样本和目标样本之间的类别内相关性,以便为下一个适配步骤生成维度对齐的特征表示。在 DGA 步骤中,CDGA 负责学习一个包含分布和几何排列的分类器。此外,在这一步骤中,高可信度的伪标记样本会被精心挑选出来,用于下一次 PCCA 的迭代,从而在 PCCA 和 DGA 之间建立起有益的耦合,以迭代的方式提高适应性能。在各种视觉跨域基准上的实验结果表明,与现有的浅层异构域适应方法相比,CDGA 取得了显著的性能,甚至优于最先进的基于神经网络的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Improving Network Interpretability via Explanation Consistency Evaluation Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection With Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1