IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-06-05 DOI:10.1109/TMM.2024.3410113
Yang Bai;Meijing Gao;Shiyu Li;Ping Wang;Ning Guan;Haozheng Yin;Yonghao Yan
{"title":"IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy","authors":"Yang Bai;Meijing Gao;Shiyu Li;Ping Wang;Ning Guan;Haozheng Yin;Yonghao Yan","doi":"10.1109/TMM.2024.3410113","DOIUrl":null,"url":null,"abstract":"The fusion of infrared (IR) and visible (VIS) images aims to capture complementary information from diverse sensors, resulting in a fused image that enhances the overall human perception of the scene. However, existing fusion methods face challenges preserving diverse feature information, leading to cross-modal interference, feature degradation, and detail loss in the fused image. To solve the above problems, this paper proposes an image fusion method based on the infrared target mask and bimodal feature extraction strategy, termed IBFusion. Firstly, we define an infrared target mask, employing it to retain crucial information from the source images in the fused result. Additionally, we devise a mixed loss function, encompassing content loss, gradient loss, and structure loss, to ensure the coherence of the fused image with the IR and VIS images. Then, the mask is introduced into the mixed loss function to guide feature extraction and unsupervised network optimization. Secondly, we create a bimodal feature extraction strategy and construct a Dual-channel Multi-scale Feature Extraction Module (DMFEM) to extract thermal target information from the IR image and background texture information from the VIS image. This module retains the complementary information of the two source images. Finally, we use the Feature Fusion Module (FFM) to fuse the features effectively, generating the fusion result. Experiments on three public datasets demonstrate that the fusion results of our method have prominent infrared targets and clear texture details. Both subjective and objective assessments are better than the other twelve advanced algorithms, proving our method's effectiveness.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10610-10622"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10550147/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion of infrared (IR) and visible (VIS) images aims to capture complementary information from diverse sensors, resulting in a fused image that enhances the overall human perception of the scene. However, existing fusion methods face challenges preserving diverse feature information, leading to cross-modal interference, feature degradation, and detail loss in the fused image. To solve the above problems, this paper proposes an image fusion method based on the infrared target mask and bimodal feature extraction strategy, termed IBFusion. Firstly, we define an infrared target mask, employing it to retain crucial information from the source images in the fused result. Additionally, we devise a mixed loss function, encompassing content loss, gradient loss, and structure loss, to ensure the coherence of the fused image with the IR and VIS images. Then, the mask is introduced into the mixed loss function to guide feature extraction and unsupervised network optimization. Secondly, we create a bimodal feature extraction strategy and construct a Dual-channel Multi-scale Feature Extraction Module (DMFEM) to extract thermal target information from the IR image and background texture information from the VIS image. This module retains the complementary information of the two source images. Finally, we use the Feature Fusion Module (FFM) to fuse the features effectively, generating the fusion result. Experiments on three public datasets demonstrate that the fusion results of our method have prominent infrared targets and clear texture details. Both subjective and objective assessments are better than the other twelve advanced algorithms, proving our method's effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IBFusion:基于红外目标掩码和双模特征提取策略的红外与可见光图像融合方法
红外(IR)和可见光(VIS)图像的融合旨在捕捉来自不同传感器的互补信息,从而生成融合图像,增强人类对场景的整体感知。然而,现有的融合方法在保存不同特征信息方面面临挑战,导致融合图像出现跨模态干扰、特征退化和细节丢失。为了解决上述问题,本文提出了一种基于红外目标掩膜和双模态特征提取策略的图像融合方法,称为 IBFusion。首先,我们定义了红外目标掩膜,利用它在融合结果中保留源图像的关键信息。此外,我们还设计了一个混合损失函数,包括内容损失、梯度损失和结构损失,以确保融合图像与红外图像和可见光图像的一致性。然后,在混合损失函数中引入掩码,以指导特征提取和无监督网络优化。其次,我们创建了双模特征提取策略,并构建了双通道多尺度特征提取模块(DMFEM),以提取红外图像中的热目标信息和可见光图像中的背景纹理信息。该模块保留了两幅源图像的互补信息。最后,我们使用特征融合模块(FFM)对特征进行有效融合,生成融合结果。在三个公开数据集上的实验表明,我们方法的融合结果具有突出的红外目标和清晰的纹理细节。主观和客观评价均优于其他十二种先进算法,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
2025 Reviewers List Long-Tailed Continual Learning for Visual Food Recognition SSPD: Spatial-Spectral Prior Decoupling Model for Spectral Snapshot Compressive Imaging Feature Dispersion Adaptation With Pre-Pooling Prototype for Continual Image Classification Rethinking Class-Incremental Learning From a Dynamic Imbalanced Learning Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1