FWICSS-Federated Watermarked Ideal Client Selection Strategy for Internet of Things (IoT) Intrusion Detection System

IF 1.9 4区 计算机科学 Q3 TELECOMMUNICATIONS Wireless Personal Communications Pub Date : 2024-08-06 DOI:10.1007/s11277-024-11477-6
R. Alexander, K. Pradeep Mohan Kumar
{"title":"FWICSS-Federated Watermarked Ideal Client Selection Strategy for Internet of Things (IoT) Intrusion Detection System","authors":"R. Alexander, K. Pradeep Mohan Kumar","doi":"10.1007/s11277-024-11477-6","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) is a rapidly growing technology that has been generating increasing amounts of traffic from multiple devices. However, this growth in traffic has also created vulnerabilities that need to be addressed. To identify attacking traffic while preserving data, it is important to quickly process intrusive data. Federated learning is a popular solution for decentralized training that preserves data, but it can also be susceptible to federated poisoning attacks caused by malicious clients. This work proposes a clustering-based client selection strategy to identify malicious clients based on their run time, followed by a trigger-set-based encryption mechanism that verifies the authenticity of the clients. This approach allows unreliable clients with plain text-based gradients to be ignored by the global model. The methodology was evaluated using the IoT23 dataset, and its efficiency, robustness, false alarms, and ability to handle some of the poisoning attacks that occur due to tuning and pruning were verified. The LeNet and DeepCtrl algorithms were used to determine detection accuracy, and after the implementation of a watermarking strategy, the detection accuracy improved significantly. For the DeepCtrl classifier, the detection accuracy improved from 89.90 to 99.8%, while for the LeNet classifier, it improved from 86.21 to 96.54%. This proposed methodology can be a useful tool for identifying attacking traffic and improving the security of IoT networks.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"39 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11477-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) is a rapidly growing technology that has been generating increasing amounts of traffic from multiple devices. However, this growth in traffic has also created vulnerabilities that need to be addressed. To identify attacking traffic while preserving data, it is important to quickly process intrusive data. Federated learning is a popular solution for decentralized training that preserves data, but it can also be susceptible to federated poisoning attacks caused by malicious clients. This work proposes a clustering-based client selection strategy to identify malicious clients based on their run time, followed by a trigger-set-based encryption mechanism that verifies the authenticity of the clients. This approach allows unreliable clients with plain text-based gradients to be ignored by the global model. The methodology was evaluated using the IoT23 dataset, and its efficiency, robustness, false alarms, and ability to handle some of the poisoning attacks that occur due to tuning and pruning were verified. The LeNet and DeepCtrl algorithms were used to determine detection accuracy, and after the implementation of a watermarking strategy, the detection accuracy improved significantly. For the DeepCtrl classifier, the detection accuracy improved from 89.90 to 99.8%, while for the LeNet classifier, it improved from 86.21 to 96.54%. This proposed methodology can be a useful tool for identifying attacking traffic and improving the security of IoT networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FWICSS-Federated Watermarked Ideal Client Selection Strategy for Internet of Things(物联网)入侵检测系统
物联网(IoT)是一项快速发展的技术,它从多个设备产生的流量越来越大。然而,流量的增长也带来了需要解决的漏洞。要在保护数据的同时识别攻击流量,必须快速处理入侵数据。联盟学习是一种流行的去中心化训练解决方案,可以保留数据,但也容易受到恶意客户端造成的联盟中毒攻击。这项工作提出了一种基于聚类的客户端选择策略,根据客户端的运行时间来识别恶意客户端,然后采用基于触发集的加密机制来验证客户端的真实性。这种方法允许全局模型忽略基于纯文本梯度的不可靠客户端。该方法使用 IoT23 数据集进行了评估,其效率、鲁棒性、误报率以及处理因调整和剪枝而出现的中毒攻击的能力都得到了验证。LeNet 和 DeepCtrl 算法用于确定检测精度,在实施水印策略后,检测精度显著提高。DeepCtrl 分类器的检测准确率从 89.90% 提高到 99.8%,而 LeNet 分类器的检测准确率则从 86.21% 提高到 96.54%。所提出的方法可以成为识别攻击流量和提高物联网网络安全性的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wireless Personal Communications
Wireless Personal Communications 工程技术-电信学
CiteScore
5.80
自引率
9.10%
发文量
663
审稿时长
6.8 months
期刊介绍: The Journal on Mobile Communication and Computing ... Publishes tutorial, survey, and original research papers addressing mobile communications and computing; Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia; Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.; 98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again. Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures. In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment. The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.
期刊最新文献
Capacity Analysis of a WLAN Cell Using VoWiFi Service for CBR Traffic Telecardiology in “New Normal” COVID-19: Efficacy of Neuro-Metaheuristic Session Key (NMSK) and Encryption Through Bipartite New State-of-Art Sharing A Robust Bias Reduction Method with Geometric Constraint for TDOA-Based Localization Variable Speed Drive Applications Performing Effectively with ANN Technique HE-AO: An Optimization-Based Encryption Approach for Data Delivery Model in A Multi-Tenant Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1