Potential for multi-application advancements from doping zirconium (Zr) for improved optical, electrical, and resistive memory properties of zinc oxide (ZnO) thin films
Amit K Chawla, Navjot Hothi, Akula Umamaheswara Rao, Archana Singh Kharb, Avaani Chanana, Kifayat H Mir, Pramod Kumar, Tarun Garg, Vipin Chawla, Ravish Jain, Charu Pant and Sanjeev Kumar
{"title":"Potential for multi-application advancements from doping zirconium (Zr) for improved optical, electrical, and resistive memory properties of zinc oxide (ZnO) thin films","authors":"Amit K Chawla, Navjot Hothi, Akula Umamaheswara Rao, Archana Singh Kharb, Avaani Chanana, Kifayat H Mir, Pramod Kumar, Tarun Garg, Vipin Chawla, Ravish Jain, Charu Pant and Sanjeev Kumar","doi":"10.1088/1402-4896/ad69dc","DOIUrl":null,"url":null,"abstract":"Transition metal-doped Zinc oxide (ZnO) thin films with an optimal wide band gap and semiconducting nature find numerous applications in optoelectronic devices, gas sensors, spintronic devices, and electronics. In this study, Zirconium (Zr) doped ZnO thin films were deposited on ITO (Indium Tin oxide) coated glass substrate using RF-magnetron sputtering. Optical and electrical properties were examined for their potential use in resistive random-access memory (RRAM) applications. X-ray Diffraction (XRD), UV–vis spectroscopy, x-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate structural, optical, and compositional properties and roughness respectively. The results demonstrate that the films possess crystalline properties. Additionally, an augmentation in Zr concentration correlates with an elevation in the optical band gap, ascending from 3.226 eV to 3.26 eV, accompanied by an increase in Urbach energy from 0.0826 eV to 0.1234 eV. The film with the highest Zr content among all the films demonstrated the best electrical performance for resistive memory applications. Incorporating Zr as a dopant shows enhancement in the electrical performance and such ZnO films with optimum concertation of Zr can potentially be used in RRAM. ZnO being a versatile host material, its doping with Zr may extend its applications in catalysis, gas sensing, energy storage, and biomedical engineering. ZnO thin films employ zirconium (Zr) as a dopant, which is a novel way to improve the material’s characteristics. Although ZnO has been thoroughly researched, adding Zr presents a novel technique to enhance optical, electrical, and resistive memory characteristics all at once that has not been fully investigated.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad69dc","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal-doped Zinc oxide (ZnO) thin films with an optimal wide band gap and semiconducting nature find numerous applications in optoelectronic devices, gas sensors, spintronic devices, and electronics. In this study, Zirconium (Zr) doped ZnO thin films were deposited on ITO (Indium Tin oxide) coated glass substrate using RF-magnetron sputtering. Optical and electrical properties were examined for their potential use in resistive random-access memory (RRAM) applications. X-ray Diffraction (XRD), UV–vis spectroscopy, x-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate structural, optical, and compositional properties and roughness respectively. The results demonstrate that the films possess crystalline properties. Additionally, an augmentation in Zr concentration correlates with an elevation in the optical band gap, ascending from 3.226 eV to 3.26 eV, accompanied by an increase in Urbach energy from 0.0826 eV to 0.1234 eV. The film with the highest Zr content among all the films demonstrated the best electrical performance for resistive memory applications. Incorporating Zr as a dopant shows enhancement in the electrical performance and such ZnO films with optimum concertation of Zr can potentially be used in RRAM. ZnO being a versatile host material, its doping with Zr may extend its applications in catalysis, gas sensing, energy storage, and biomedical engineering. ZnO thin films employ zirconium (Zr) as a dopant, which is a novel way to improve the material’s characteristics. Although ZnO has been thoroughly researched, adding Zr presents a novel technique to enhance optical, electrical, and resistive memory characteristics all at once that has not been fully investigated.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.