Nurul Farah Adilla Zaidi, Nur Najahatul Huda Saris, Muhammad Yusof Mohd Noor, Sumiaty Ambran, Mohd Rashidi Salim and Mohd Haniff Ibrahim
{"title":"Investigation of transformer oil aging using no-core optical fiber (NCF) sensor","authors":"Nurul Farah Adilla Zaidi, Nur Najahatul Huda Saris, Muhammad Yusof Mohd Noor, Sumiaty Ambran, Mohd Rashidi Salim and Mohd Haniff Ibrahim","doi":"10.1088/1402-4896/ad6942","DOIUrl":null,"url":null,"abstract":"Transformer oil plays a crucial role in insulation and cooling within high-voltage transformers, but it degrades over time. This research proposes a durable sensor capable of detecting the refractive index (RI) of transformer oil when it exceeds the RI of the sensor structure, known as high refractive index (HRI) sensing. The study utilizes a no-core optical fiber (NCF) to monitor the quality of transformer oil. In this setup, single mode fiber (SMF) is employed as both the input and output of the NCF, forming an SMF-NCF-SMF (SNS) sensor. To date, to the use of an NCF in the SMF-NCF-SMF scheme has not been reported for high RI fiber sensing and transformer oil degradation detection. Additionally, this study provides an analysis of the influence of different diameters and lengths of NCF on the sensor’s sensitivity. The HRI sensing performance of the sensor was evaluated both numerically and experimentally by observing power spectrum changes due to leaky modes interference in response to varying transformer oil RI values from 1.4600 RIU to 1.5500 RIU. The NCF, with a geometry of 1 cm in length and 100 μm in diameter, demonstrated remarkable sensitivity, achieving up to 88.285 dBm/RIU for HRI values within the specified range. The sensor effectively discerned various aging levels of transformer oil in power transformer applications. Additionally, since the NCF structure is entirely composed of silica-based materials, it exhibited significant temperature resistance. These characteristics make the SNS structure well-suited for reliable deployment in challenging thermal environments.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad6942","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transformer oil plays a crucial role in insulation and cooling within high-voltage transformers, but it degrades over time. This research proposes a durable sensor capable of detecting the refractive index (RI) of transformer oil when it exceeds the RI of the sensor structure, known as high refractive index (HRI) sensing. The study utilizes a no-core optical fiber (NCF) to monitor the quality of transformer oil. In this setup, single mode fiber (SMF) is employed as both the input and output of the NCF, forming an SMF-NCF-SMF (SNS) sensor. To date, to the use of an NCF in the SMF-NCF-SMF scheme has not been reported for high RI fiber sensing and transformer oil degradation detection. Additionally, this study provides an analysis of the influence of different diameters and lengths of NCF on the sensor’s sensitivity. The HRI sensing performance of the sensor was evaluated both numerically and experimentally by observing power spectrum changes due to leaky modes interference in response to varying transformer oil RI values from 1.4600 RIU to 1.5500 RIU. The NCF, with a geometry of 1 cm in length and 100 μm in diameter, demonstrated remarkable sensitivity, achieving up to 88.285 dBm/RIU for HRI values within the specified range. The sensor effectively discerned various aging levels of transformer oil in power transformer applications. Additionally, since the NCF structure is entirely composed of silica-based materials, it exhibited significant temperature resistance. These characteristics make the SNS structure well-suited for reliable deployment in challenging thermal environments.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.