Junpei Zhang, Hongyun Zhang, Ying Chen, Shiyao Chen, Hailing Liu
{"title":"Dendrobine alleviates oleic acid-induced lipid accumulation by inhibiting FOS/METTL14 pathway","authors":"Junpei Zhang, Hongyun Zhang, Ying Chen, Shiyao Chen, Hailing Liu","doi":"10.1007/s10735-024-10246-w","DOIUrl":null,"url":null,"abstract":"<div><p>Dendrobine (DDB), an alkaloid isolated from the Chinese herb Dendrobium, has antioxidant and anti-inflammatory effects; however, whether DDB reduces oleic acid (OA)-induced lipid accumulation remains unclear. OA-induced lipid accumulation model of HepG2 cells were treated with DDB. Cellular lipid deposition was assessed by Oil Red O (ORO) staining and triglyceride and total cholesterol detection. RNA-Sequencing (RNA-seq), biological function analysis, and transcription factor (TFs) prediction were combined to identify key TF in the DDB-treated OA model. Finally, the roles of FOS and METTL14 were examined using a DDB-induced lipid accumulation model. DDB inhibited OA-induced lipid accumulation. We identified 895 differentially expressed genes (DEGs) that were mainly enriched in various biological processes of lipid synthesis and transport. Four transcription factors (SOX9, MLXIPL, FOS, and JUN) associated with lipid metabolism and FOS levels in the OA-induced lipid accumulation model after DDB treatment had the greatest changes in expression change. Overexpression of FOS alleviates the inhibitory effect of DDB on OA-induced lipid accumulation. METTL14 is a target gene of FOS, and simultaneous interference with METTL14 in cells with high FOS expression restored the alleviating effect of DDB on lipid accumulation. DDB alleviated OA-induced lipid accumulation by inhibiting the FOS/METTL14 pathway.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"55 5","pages":"995 - 1007"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10246-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dendrobine (DDB), an alkaloid isolated from the Chinese herb Dendrobium, has antioxidant and anti-inflammatory effects; however, whether DDB reduces oleic acid (OA)-induced lipid accumulation remains unclear. OA-induced lipid accumulation model of HepG2 cells were treated with DDB. Cellular lipid deposition was assessed by Oil Red O (ORO) staining and triglyceride and total cholesterol detection. RNA-Sequencing (RNA-seq), biological function analysis, and transcription factor (TFs) prediction were combined to identify key TF in the DDB-treated OA model. Finally, the roles of FOS and METTL14 were examined using a DDB-induced lipid accumulation model. DDB inhibited OA-induced lipid accumulation. We identified 895 differentially expressed genes (DEGs) that were mainly enriched in various biological processes of lipid synthesis and transport. Four transcription factors (SOX9, MLXIPL, FOS, and JUN) associated with lipid metabolism and FOS levels in the OA-induced lipid accumulation model after DDB treatment had the greatest changes in expression change. Overexpression of FOS alleviates the inhibitory effect of DDB on OA-induced lipid accumulation. METTL14 is a target gene of FOS, and simultaneous interference with METTL14 in cells with high FOS expression restored the alleviating effect of DDB on lipid accumulation. DDB alleviated OA-induced lipid accumulation by inhibiting the FOS/METTL14 pathway.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.