Yihuan Lu, Fei Kang, Duo Zhang, Yue Li, Hao Liu, Chen Sun, Hao Zeng, Lei Shi, Yumo Zhao, Jing Wang
{"title":"Deep learning-aided respiratory motion compensation in PET/CT: addressing motion induced resolution loss, attenuation correction artifacts and PET-CT misalignment.","authors":"Yihuan Lu, Fei Kang, Duo Zhang, Yue Li, Hao Liu, Chen Sun, Hao Zeng, Lei Shi, Yumo Zhao, Jing Wang","doi":"10.1007/s00259-024-06872-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Respiratory motion (RM) significantly impacts image quality in thoracoabdominal PET/CT imaging. This study introduces a unified data-driven respiratory motion correction (uRMC) method, utilizing deep learning neural networks, to solve all the major issues caused by RM, i.e., PET resolution loss, attenuation correction artifacts, and PET-CT misalignment.</p><p><strong>Methods: </strong>In a retrospective study, 737 patients underwent [<sup>18</sup>F]FDG PET/CT scans using the uMI Panorama PET/CT scanner. Ninety-nine patients, who also had respiration monitoring device (VSM), formed the validation set. The remaining data of the 638 patients were used to train neural networks used in the uRMC. The uRMC primarily consists of three key components: (1) data-driven respiratory signal extraction, (2) attenuation map generation, and (3) PET-CT alignment. SUV metrics were calculated within 906 lesions for three approaches, i.e., data-driven uRMC (proposed), VSM-based uRMC, and OSEM without motion correction (NMC). RM magnitude of major organs were estimated.</p><p><strong>Results: </strong>uRMC enhanced diagnostic capabilities by revealing previously undetected lesions, sharpening lesion contours, increasing SUV values, and improving PET-CT alignment. Compared to NMC, uRMC showed increases of 10% and 17% in SUV<sub>max</sub> and SUV<sub>mean</sub> across 906 lesions. Sub-group analysis showed significant SUV increases in small and medium-sized lesions with uRMC. Minor differences were found between VSM-based and data-driven uRMC methods, with the SUV<sub>max</sub> was found statistically marginal significant or insignificant between the two methods. The study observed varied motion amplitudes in major organs, typically ranging from 10 to 20 mm.</p><p><strong>Conclusion: </strong>A data-driven solution for respiratory motion in PET/CT has been developed, validated and evaluated. To the best of our knowledge, this is the first unified solution that compensates for the motion blur within PET, the attenuation mismatch artifacts caused by PET-CT misalignment, and the misalignment between PET and CT.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":" ","pages":"62-73"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06872-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Respiratory motion (RM) significantly impacts image quality in thoracoabdominal PET/CT imaging. This study introduces a unified data-driven respiratory motion correction (uRMC) method, utilizing deep learning neural networks, to solve all the major issues caused by RM, i.e., PET resolution loss, attenuation correction artifacts, and PET-CT misalignment.
Methods: In a retrospective study, 737 patients underwent [18F]FDG PET/CT scans using the uMI Panorama PET/CT scanner. Ninety-nine patients, who also had respiration monitoring device (VSM), formed the validation set. The remaining data of the 638 patients were used to train neural networks used in the uRMC. The uRMC primarily consists of three key components: (1) data-driven respiratory signal extraction, (2) attenuation map generation, and (3) PET-CT alignment. SUV metrics were calculated within 906 lesions for three approaches, i.e., data-driven uRMC (proposed), VSM-based uRMC, and OSEM without motion correction (NMC). RM magnitude of major organs were estimated.
Results: uRMC enhanced diagnostic capabilities by revealing previously undetected lesions, sharpening lesion contours, increasing SUV values, and improving PET-CT alignment. Compared to NMC, uRMC showed increases of 10% and 17% in SUVmax and SUVmean across 906 lesions. Sub-group analysis showed significant SUV increases in small and medium-sized lesions with uRMC. Minor differences were found between VSM-based and data-driven uRMC methods, with the SUVmax was found statistically marginal significant or insignificant between the two methods. The study observed varied motion amplitudes in major organs, typically ranging from 10 to 20 mm.
Conclusion: A data-driven solution for respiratory motion in PET/CT has been developed, validated and evaluated. To the best of our knowledge, this is the first unified solution that compensates for the motion blur within PET, the attenuation mismatch artifacts caused by PET-CT misalignment, and the misalignment between PET and CT.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.