Zekun Niu, Hang Yang, Lyu Li, Minghui Shi, Guozhi Xu, Weisheng Hu, Lilin Yi
{"title":"Learnable digital signal processing: a new benchmark of linearity compensation for optical fiber communications.","authors":"Zekun Niu, Hang Yang, Lyu Li, Minghui Shi, Guozhi Xu, Weisheng Hu, Lilin Yi","doi":"10.1038/s41377-024-01556-5","DOIUrl":null,"url":null,"abstract":"<p><p>The surge in interest regarding the next generation of optical fiber transmission has stimulated the development of digital signal processing (DSP) schemes that are highly cost-effective with both high performance and low complexity. As benchmarks for nonlinear compensation methods, however, traditional DSP designed with block-by-block modules for linear compensations, could exhibit residual linear effects after compensation, limiting the nonlinear compensation performance. Here we propose a high-efficient design thought for DSP based on the learnable perspectivity, called learnable DSP (LDSP). LDSP reuses the traditional DSP modules, regarding the whole DSP as a deep learning framework and optimizing the DSP parameters adaptively based on backpropagation algorithm from a global scale. This method not only establishes new standards in linear DSP performance but also serves as a critical benchmark for nonlinear DSP designs. In comparison to traditional DSP with hyperparameter optimization, a notable enhancement of approximately 1.21 dB in the Q factor for 400 Gb/s signal after 1600 km fiber transmission is experimentally demonstrated by combining LDSP and perturbation-based nonlinear compensation algorithm. Benefiting from the learnable model, LDSP can learn the best configuration adaptively with low complexity, reducing dependence on initial parameters. The proposed approach implements a symbol-rate DSP with a small bit error rate (BER) cost in exchange for a 48% complexity reduction compared to the conventional 2 samples/symbol processing. We believe that LDSP represents a new and highly efficient paradigm for DSP design, which is poised to attract considerable attention across various domains of optical communications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"188"},"PeriodicalIF":19.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01556-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The surge in interest regarding the next generation of optical fiber transmission has stimulated the development of digital signal processing (DSP) schemes that are highly cost-effective with both high performance and low complexity. As benchmarks for nonlinear compensation methods, however, traditional DSP designed with block-by-block modules for linear compensations, could exhibit residual linear effects after compensation, limiting the nonlinear compensation performance. Here we propose a high-efficient design thought for DSP based on the learnable perspectivity, called learnable DSP (LDSP). LDSP reuses the traditional DSP modules, regarding the whole DSP as a deep learning framework and optimizing the DSP parameters adaptively based on backpropagation algorithm from a global scale. This method not only establishes new standards in linear DSP performance but also serves as a critical benchmark for nonlinear DSP designs. In comparison to traditional DSP with hyperparameter optimization, a notable enhancement of approximately 1.21 dB in the Q factor for 400 Gb/s signal after 1600 km fiber transmission is experimentally demonstrated by combining LDSP and perturbation-based nonlinear compensation algorithm. Benefiting from the learnable model, LDSP can learn the best configuration adaptively with low complexity, reducing dependence on initial parameters. The proposed approach implements a symbol-rate DSP with a small bit error rate (BER) cost in exchange for a 48% complexity reduction compared to the conventional 2 samples/symbol processing. We believe that LDSP represents a new and highly efficient paradigm for DSP design, which is poised to attract considerable attention across various domains of optical communications.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.