Developing a recovery process for bioactives from discarded by-products of winemaking industry based on multivariate optimization method: Deep eutectic solvents as eco-friendly extraction media.
Sena Kavas, Alara Erbaşar, Ebru Kurtulbaş, Serena Fiorito, Selin Şahin
{"title":"Developing a recovery process for bioactives from discarded by-products of winemaking industry based on multivariate optimization method: Deep eutectic solvents as eco-friendly extraction media.","authors":"Sena Kavas, Alara Erbaşar, Ebru Kurtulbaş, Serena Fiorito, Selin Şahin","doi":"10.1002/pca.3434","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The recovery process for bioactives from discarded by-products of the winemaking industry is of great value considering both environmental and economic aspects.</p><p><strong>Objective: </strong>The goal of this study is to investigate the extraction of phenolic antioxidants from grape (Vitis vinifera) seeds by means of carboxylic acid-based deep eutectic solvents (DESs) in order to propose an environmentally friendly method based on a multivariate optimization approach.</p><p><strong>Material and methods: </strong>Carboxylic acid-based DESs were designed with several molar ratios (1/1, 1/2, and 2/1). Two polyols (glycerol and ethylene glycol) were used as hydrogen bond donors, while formic acid, acetic acid, and propionic acid were selected as hydrogen bond acceptors. The process parameters (water content, extraction time, and solid mass) were analyzed to optimize the process through Box-Behnken design with response surface method, after determination of the best combination for the highest total phenolic content (TPC) and the antioxidant activity yields.</p><p><strong>Results: </strong>The maximum TPC yield (153.17 ± 0.003 mg-GAE/g-GS) and antioxidant activity yield (82.26 ± 0.004 mg-GAE/g-GS) were achieved by 50% water addition into the DES (ethylene glycol/acetic acid, 1/1), 85 sec extraction time, and 0.1 g grape seed.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"1803-1812"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The recovery process for bioactives from discarded by-products of the winemaking industry is of great value considering both environmental and economic aspects.
Objective: The goal of this study is to investigate the extraction of phenolic antioxidants from grape (Vitis vinifera) seeds by means of carboxylic acid-based deep eutectic solvents (DESs) in order to propose an environmentally friendly method based on a multivariate optimization approach.
Material and methods: Carboxylic acid-based DESs were designed with several molar ratios (1/1, 1/2, and 2/1). Two polyols (glycerol and ethylene glycol) were used as hydrogen bond donors, while formic acid, acetic acid, and propionic acid were selected as hydrogen bond acceptors. The process parameters (water content, extraction time, and solid mass) were analyzed to optimize the process through Box-Behnken design with response surface method, after determination of the best combination for the highest total phenolic content (TPC) and the antioxidant activity yields.
Results: The maximum TPC yield (153.17 ± 0.003 mg-GAE/g-GS) and antioxidant activity yield (82.26 ± 0.004 mg-GAE/g-GS) were achieved by 50% water addition into the DES (ethylene glycol/acetic acid, 1/1), 85 sec extraction time, and 0.1 g grape seed.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.