PRNet with Convolution Layer for PAPR Reduction of OFDM Signals

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-06-11 DOI:10.23919/comex.2024XBL0091
Masaya Ohta;Koichi Kubota
{"title":"PRNet with Convolution Layer for PAPR Reduction of OFDM Signals","authors":"Masaya Ohta;Koichi Kubota","doi":"10.23919/comex.2024XBL0091","DOIUrl":null,"url":null,"abstract":"This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"339-342"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554794/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带卷积层的 PRNet 用于降低 OFDM 信号的 PAPR
这项研究利用深度学习来解决正交频分复用(OFDM)中峰均功率比(PAPR)过高的问题,这对无线通信至关重要。虽然可以使用深度学习模型 PAPR 降低网络(PRNet)来抑制 PAPR,但其计算成本巨大。本研究优化了 PRNet 模型的层数,并用卷积层取代了全连接层,以减少计算负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Special Cluster in Conjunction with IEICE General Conference 2024 Intelligent Reflecting Surface Effect by Switching ±45° Incident Polarization in Outdoor Environment Compact and Wideband Rectifier Using a Multi-Stage Type Matching Circuit for Microwave Wireless Power Transmission System Anomaly Detection Support for Crowdworkers by Providing Anomaly Scores Reducing Temperature Rise in Metal Meshes Exposed to Incident Electromagnetic Waves through Regular Polygonal Unit Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1