PRNet with Convolution Layer for PAPR Reduction of OFDM Signals

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-06-11 DOI:10.23919/comex.2024XBL0091
Masaya Ohta;Koichi Kubota
{"title":"PRNet with Convolution Layer for PAPR Reduction of OFDM Signals","authors":"Masaya Ohta;Koichi Kubota","doi":"10.23919/comex.2024XBL0091","DOIUrl":null,"url":null,"abstract":"This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"339-342"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10554794/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research uses deep learning to address the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM), which is critical for wireless communications. Although a PAPR-reducing network (PRNet), which is a deep learning model, can be used to suppress the PAPR, its computational cost is huge. In this research, the number of layers in a PRNet model is optimized and a fully connected layer is replaced with a convolution layer to reduce the computational load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带卷积层的 PRNet 用于降低 OFDM 信号的 PAPR
这项研究利用深度学习来解决正交频分复用(OFDM)中峰均功率比(PAPR)过高的问题,这对无线通信至关重要。虽然可以使用深度学习模型 PAPR 降低网络(PRNet)来抑制 PAPR,但其计算成本巨大。本研究优化了 PRNet 模型的层数,并用卷积层取代了全连接层,以减少计算负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Preamble Detection Method for RSS Data Synchronization in WLAN Monitoring Versatile Two-Mode ODFT-Based Labeling in Mode-Multiplexed Optical Packet Switching A Measurement Method Using Packets for Measuring the Processing Time of Edge and Cloud Applications Circularly Polarized Cavity-Backed Antenna with Variable Magneto-Electric Crossed-Dipole Structure Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1