Recovery of missing samples in Orthogonal Frequency Division Multiplexing signals with optimisation using data carriers

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-05-12 DOI:10.1049/rsn2.12560
Anders Haglund, Per-Olov Frölind, Lars M. H. Ulander
{"title":"Recovery of missing samples in Orthogonal Frequency Division Multiplexing signals with optimisation using data carriers","authors":"Anders Haglund,&nbsp;Per-Olov Frölind,&nbsp;Lars M. H. Ulander","doi":"10.1049/rsn2.12560","DOIUrl":null,"url":null,"abstract":"<p>A method is proposed for reconstructing an Orthogonal Frequency Division Multiplexing (OFDM) signal that contains data gaps, with the aim to improve demodulation. The main objective is to use the method in a passive radar application with missing data samples and to improve target detection. The OFDM signal is assumed to comply with the Digital Video Broadcasting Terrestrial standard. The proposed recovery method is based on optimisation of a novel objective function, which consists of two parts. The first part is a function of the energy in the out-of-band frequencies, whereas the second, and novel part, uses the location of data carriers in the constellation diagram. The method is evaluated using both simulations and real data. The authors show that the proposed method significantly improves the OFDM signal in just a few iteration steps. The proposed method improved the condition number more than a factor ten thousand millions compared to using the least square method on the out-of-band frequencies only. The authors also decode the symbols with the Viterbi decoding algorithm and show how the required number of iterations with the proposed algorithm depends on the amount of missing samples and on the Signal-to-Noise Ratio in order to achieve a Bit Error Rate of less than one in one hundred thousand millions.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12560","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12560","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A method is proposed for reconstructing an Orthogonal Frequency Division Multiplexing (OFDM) signal that contains data gaps, with the aim to improve demodulation. The main objective is to use the method in a passive radar application with missing data samples and to improve target detection. The OFDM signal is assumed to comply with the Digital Video Broadcasting Terrestrial standard. The proposed recovery method is based on optimisation of a novel objective function, which consists of two parts. The first part is a function of the energy in the out-of-band frequencies, whereas the second, and novel part, uses the location of data carriers in the constellation diagram. The method is evaluated using both simulations and real data. The authors show that the proposed method significantly improves the OFDM signal in just a few iteration steps. The proposed method improved the condition number more than a factor ten thousand millions compared to using the least square method on the out-of-band frequencies only. The authors also decode the symbols with the Viterbi decoding algorithm and show how the required number of iterations with the proposed algorithm depends on the amount of missing samples and on the Signal-to-Noise Ratio in order to achieve a Bit Error Rate of less than one in one hundred thousand millions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据载波优化恢复正交频分复用信号中的缺失样本
本文提出了一种重建包含数据间隙的正交频分复用(OFDM)信号的方法,旨在改进解调。主要目的是将该方法用于数据样本缺失的无源雷达应用中,并改进目标探测。假定 OFDM 信号符合地面数字视频广播标准。所提出的恢复方法基于一个新的目标函数的优化,该函数由两部分组成。第一部分是带外频率能量的函数,而第二部分,也是新颖的部分,则使用星座图中数据载波的位置。作者利用模拟和真实数据对该方法进行了评估。作者的研究表明,所提出的方法只需几个迭代步骤就能显著改善 OFDM 信号。与仅在带外频率上使用最小平方法相比,所提出的方法对条件数的改进超过了千万倍。作者还利用维特比解码算法对符号进行了解码,并展示了采用所提算法所需的迭代次数如何取决于缺失样本量和信噪比,以实现低于十亿分之一的比特误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Quantum illumination radars: Target detection Guest Editorial: Advancements and future trends in noise radar technology Artificial Intelligence applications in Noise Radar Technology Implementation of unknown parameter estimation procedure for hybrid and discrete non-linear systems Cognitive dual coprime frequency diverse array MIMO radar network for target discrimination and main-lobe interference mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1