Broad observation area and high resolution using identifier for synthetic aperture radars

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-05-31 DOI:10.1049/rsn2.12576
Takayoshi Furuno
{"title":"Broad observation area and high resolution using identifier for synthetic aperture radars","authors":"Takayoshi Furuno","doi":"10.1049/rsn2.12576","DOIUrl":null,"url":null,"abstract":"<p>To achieve broad observation areas and high resolution, synthetic aperture radars adopt wavelet-transformed observation areas that contain information on position and velocity. The observation area adopts pseudosignals with scattering information about the position and velocity in three dimensions. The wavelet transform (WT) is applied to micromoving targets to obtain a pseudosignal, and each micromoving target is defined by an Identifier (ID) of <b>parameter scale <i>a</i></b> and <b>parameter</b> shift <i>b</i>. Because the interval of each micromoving target is minimised by the WT, the array of all micromoving targets becomes a continuum that can be represented by straight or curved lines. Every micromoving target can be identified by an ID as long as the micromoving targets do not overlap. Every moving signal in a three-dimensional space can be identified by the abovementioned ID. The results demonstrated that the observation area can be broadened by employing the minimum number of units with micromoving targets. In addition, micromoving targets in the observation area can be obtained at a high resolution (3 cm), and the position of the ID does not change owing to noise. The developments presented can contribute to the fast detection of earthquakes.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 8","pages":"1333-1339"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12576","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve broad observation areas and high resolution, synthetic aperture radars adopt wavelet-transformed observation areas that contain information on position and velocity. The observation area adopts pseudosignals with scattering information about the position and velocity in three dimensions. The wavelet transform (WT) is applied to micromoving targets to obtain a pseudosignal, and each micromoving target is defined by an Identifier (ID) of parameter scale a and parameter shift b. Because the interval of each micromoving target is minimised by the WT, the array of all micromoving targets becomes a continuum that can be represented by straight or curved lines. Every micromoving target can be identified by an ID as long as the micromoving targets do not overlap. Every moving signal in a three-dimensional space can be identified by the abovementioned ID. The results demonstrated that the observation area can be broadened by employing the minimum number of units with micromoving targets. In addition, micromoving targets in the observation area can be obtained at a high resolution (3 cm), and the position of the ID does not change owing to noise. The developments presented can contribute to the fast detection of earthquakes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用合成孔径雷达识别器实现宽观测区域和高分辨率
为了实现宽观测区域和高分辨率,合成孔径雷达采用了包含位置和速度信息的小波变换观测区域。观测区域采用包含三维位置和速度散射信息的伪信号。小波变换(WT)应用于微动目标以获得伪信号,每个微动目标由参数比例 a 和参数偏移 b 的标识符(ID)定义。由于每个微动目标的间隔被 WT 最小化,所有微动目标的阵列成为一个连续体,可以用直线或曲线表示。只要微移动目标不重叠,每个微移动目标都可以通过 ID 进行识别。三维空间中的每一个移动信号都可以通过上述 ID 进行识别。结果表明,通过使用最少数量的微移动目标单元,可以扩大观测区域。此外,观测区域内的微移动目标可以高分辨率(3 厘米)获得,而且 ID 的位置不会因噪声而改变。这些发展有助于快速探测地震。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1