Qigang Liang, Delei Yu, Jinyuan Wei, Luyu Li, Jinping Ou
{"title":"Theoretical study of a novel resettable-inertia damper: Dynamic modeling, equivalent linearization, and performance assessment","authors":"Qigang Liang, Delei Yu, Jinyuan Wei, Luyu Li, Jinping Ou","doi":"10.1002/eqe.4186","DOIUrl":null,"url":null,"abstract":"<p>To passively achieve an inertial device with unidirectional force transmission similar to Bang Bang control, this study introduces a novel energy dissipation device known as the resettable-inertia damper (RID). The ingenious motion principles of the RID, encompassing a rack-and-pinion, bevel gear commutation system, speed transmission, and eddy current damping, are elucidated in detail. In particular, a unidirectional rotational flywheel within the device selectively engages when the primary structure reciprocates. The physical mass of the flywheel undergoes conversion into an amplified inertia through the rack-and-pinion mechanism, which enables the enhancement of damping effects coupling the flywheel rotation and eddy current configuration. A coupled multibody dynamic model, combining the clutching effect, the flywheel inertia, and the rotational damping, is formulated to analyze the system with RID (RIDS). Currently, an analysis of the hysteretic behaviors of RID is carried out. To facilitate the design and evaluation of the performance of RIDS, an equivalent linearization method is proposed for RIDS. The feasibility of this simplified method is validated under harmonic excitation. Additionally, the study examines the performance of equivalent linear systems (ELSs) and RIDS under natural ground motions and stochastic stationary excitation in peak and variance responses levels, respectively. Comparison of RID with traditional inerter shows that RID can achieve a more pronounced control with less force transferred to the structure and with the potential to recover vibration energy, highlighting its unique advantages.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"53 11","pages":"3546-3564"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4186","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
To passively achieve an inertial device with unidirectional force transmission similar to Bang Bang control, this study introduces a novel energy dissipation device known as the resettable-inertia damper (RID). The ingenious motion principles of the RID, encompassing a rack-and-pinion, bevel gear commutation system, speed transmission, and eddy current damping, are elucidated in detail. In particular, a unidirectional rotational flywheel within the device selectively engages when the primary structure reciprocates. The physical mass of the flywheel undergoes conversion into an amplified inertia through the rack-and-pinion mechanism, which enables the enhancement of damping effects coupling the flywheel rotation and eddy current configuration. A coupled multibody dynamic model, combining the clutching effect, the flywheel inertia, and the rotational damping, is formulated to analyze the system with RID (RIDS). Currently, an analysis of the hysteretic behaviors of RID is carried out. To facilitate the design and evaluation of the performance of RIDS, an equivalent linearization method is proposed for RIDS. The feasibility of this simplified method is validated under harmonic excitation. Additionally, the study examines the performance of equivalent linear systems (ELSs) and RIDS under natural ground motions and stochastic stationary excitation in peak and variance responses levels, respectively. Comparison of RID with traditional inerter shows that RID can achieve a more pronounced control with less force transferred to the structure and with the potential to recover vibration energy, highlighting its unique advantages.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.