“Black Boxes, full of them”: Biology Teachers’ Perception of the Role of Explanatory Black Boxes in Their Classroom

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Research in Science Education Pub Date : 2024-08-13 DOI:10.1007/s11165-024-10191-4
Gur Arie Livni Alcasid, Michal Haskel-Ittah
{"title":"“Black Boxes, full of them”: Biology Teachers’ Perception of the Role of Explanatory Black Boxes in Their Classroom","authors":"Gur Arie Livni Alcasid, Michal Haskel-Ittah","doi":"10.1007/s11165-024-10191-4","DOIUrl":null,"url":null,"abstract":"<p>Mechanistic explanations, aiming to disclose details of entities and their activities, employ the act of unpacking which, inherently and paradoxically, produces explanatory gaps—pieces of undisclosed, undetailed mechanistic information. These gaps, termed explanatory black boxes, are often perceived as counterproductive to the teaching of mechanisms, yet are integral to it, and their cognizant use is a nuanced skill. Amidst the discourse on mechanistic reasoning in science education, this paper focuses on biology teachers’ perception of explanatory black boxes and the explicit discussion of them in their classroom. Using interviews with 11 experienced high-school biology teachers, we unraveled perceived affordances and constraints in teachers’ use of black boxes in the context of challenges in teaching mechanisms. Utilizing the pedagogical content knowledge (PCK) framework, we expose a nuanced interplay of considerations related to strategies, students, curriculum alignment, assessment, and orientation toward science teaching. A constant tension existed—with considerations supporting and opposing the use of both unpacking and black boxing as teaching strategies—both within and between PCK components. In contrast, contemplating the explication of black boxes led teachers to illustrate this strategy as an intermediate one, attenuating constraints of both unpacking and black-boxing strategies while also promoting teachers’ ability to align curricular items and endorse student agency. Implications for teacher training are discussed, emphasizing the need to make teachers aware of the involvement of black boxes in mechanistic reasoning, and familiarize them with black-box explication as an intermediate strategy that can enrich their pedagogy.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10191-4","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanistic explanations, aiming to disclose details of entities and their activities, employ the act of unpacking which, inherently and paradoxically, produces explanatory gaps—pieces of undisclosed, undetailed mechanistic information. These gaps, termed explanatory black boxes, are often perceived as counterproductive to the teaching of mechanisms, yet are integral to it, and their cognizant use is a nuanced skill. Amidst the discourse on mechanistic reasoning in science education, this paper focuses on biology teachers’ perception of explanatory black boxes and the explicit discussion of them in their classroom. Using interviews with 11 experienced high-school biology teachers, we unraveled perceived affordances and constraints in teachers’ use of black boxes in the context of challenges in teaching mechanisms. Utilizing the pedagogical content knowledge (PCK) framework, we expose a nuanced interplay of considerations related to strategies, students, curriculum alignment, assessment, and orientation toward science teaching. A constant tension existed—with considerations supporting and opposing the use of both unpacking and black boxing as teaching strategies—both within and between PCK components. In contrast, contemplating the explication of black boxes led teachers to illustrate this strategy as an intermediate one, attenuating constraints of both unpacking and black-boxing strategies while also promoting teachers’ ability to align curricular items and endorse student agency. Implications for teacher training are discussed, emphasizing the need to make teachers aware of the involvement of black boxes in mechanistic reasoning, and familiarize them with black-box explication as an intermediate strategy that can enrich their pedagogy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
"黑箱,满满的黑箱":生物教师对解释性黑盒在课堂中的作用的看法
机理解释旨在揭示实体及其活动的细节,采用了拆包的行为,这种行为本质上自相矛盾,会产生解释上的空白--一些未披露的、不详细的机理信息。这些空白被称为 "解释性黑箱",通常被认为会对机制教学产生反作用,但它们又是机制教学不可或缺的一部分,对它们的认知和使用是一项细致入微的技能。在科学教育中关于机械推理的讨论中,本文重点关注生物教师对解释性黑箱的认识以及在课堂上对它们的明确讨论。通过对 11 位经验丰富的高中生物教师的访谈,我们揭示了在机制教学挑战的背景下,教师在使用黑箱时所感知到的能力和限制。利用教学内容知识(PCK)框架,我们揭示了与策略、学生、课程调整、评估和科学教学导向相关的各种考虑因素之间的微妙相互作用。无论是在 PCK 组成部分内部,还是在 PCK 组成部分之间,都存在着一种持续的紧张关系--既有支持将拆包和黑盒子作为教学策略的考虑因素,也有反对使用这两种策略的考虑因素。与此相反,对黑盒子的阐释促使教师将这一策略作为中间策略加以说明,从而减少了拆包和黑盒子策略的限制,同时也提高了教师调整课程项目和认可学生主体性的能力。本文讨论了教师培训的意义,强调有必要让教师意识到黑箱在机械推理中的作用,并让他们熟悉黑箱说明这一中间策略,从而丰富他们的教学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
期刊最新文献
Exploring the Impact of Social, Cultural, and Science Factors on Students’ STEM Career Preferences Creativity as Key Trigger to Cognitive Achievement: Effects of Digital and Analog Learning Interventions Fostering Epistemic Space for Collaborative Solutions in Primary Science Through a Socratic Seminar Inquiry Approach An Ontological Perspective on Mechanical Energy Conservation problem-solving in high School Students A Comparative Case Study Investigating Indigenous and Rural Elementary Students’ Conceptions of Community Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1