Guoxiong Deng, Yiwen Liao, Yakai Lin, Li Ding, Haihui Wang
{"title":"Engineering Robust Triazine Crosslinked and Pyridine Capped Anion Exchange Membrane for Advanced Water Electrolysis.","authors":"Guoxiong Deng, Yiwen Liao, Yakai Lin, Li Ding, Haihui Wang","doi":"10.1002/anie.202412632","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring high-performance anion exchange membranes (AEM) for water electrolyzers (AEMWEs) is significant for green hydrogen production. However, the current AEMWEs are restricted by the poor mechanical strength and low OH<sup>-</sup> conductivity of AEMs, leading to the low working stability and low current density. Here, we develop a robust AEM with polybiphenylpiperidium network by combining the crosslinking with triazine and the capping with pyridine for advanced AEMWEs. The AEM exhibits an excellent mechanical strength (79.4 MPa), low swelling ratio (19.2 %), persistent alkali stability (≈5,000 hours) and high OH<sup>-</sup> conductivity (247.2 mS cm<sup>-1</sup>) which achieves the state-of-the-art AEMs. Importantly, when applied in AEMWEs, the corresponding electrolyzer equipped with commercial nickel iron and nickel molybdenum catalysts obtained a current density of up to 3.0 A cm<sup>-2</sup> at 2 V and could be stably operated ~430 h at a high current density of 1.6 A cm<sup>-2</sup>, which exceeds the most of AEMWEs. Our results suggest that triazine crosslinking and pyridine capping can effectively improve the overall performance of the AEMWEs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202412632"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring high-performance anion exchange membranes (AEM) for water electrolyzers (AEMWEs) is significant for green hydrogen production. However, the current AEMWEs are restricted by the poor mechanical strength and low OH- conductivity of AEMs, leading to the low working stability and low current density. Here, we develop a robust AEM with polybiphenylpiperidium network by combining the crosslinking with triazine and the capping with pyridine for advanced AEMWEs. The AEM exhibits an excellent mechanical strength (79.4 MPa), low swelling ratio (19.2 %), persistent alkali stability (≈5,000 hours) and high OH- conductivity (247.2 mS cm-1) which achieves the state-of-the-art AEMs. Importantly, when applied in AEMWEs, the corresponding electrolyzer equipped with commercial nickel iron and nickel molybdenum catalysts obtained a current density of up to 3.0 A cm-2 at 2 V and could be stably operated ~430 h at a high current density of 1.6 A cm-2, which exceeds the most of AEMWEs. Our results suggest that triazine crosslinking and pyridine capping can effectively improve the overall performance of the AEMWEs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.