A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence.

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-10-01 Epub Date: 2024-08-13 DOI:10.1152/ajplung.00047.2024
Jessica C Orr, Asma Laali, Pascal F Durrenberger, Kyren A Lazarus, Marie-Belle El Mdawar, Sam M Janes, Robert E Hynds
{"title":"A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence.","authors":"Jessica C Orr, Asma Laali, Pascal F Durrenberger, Kyren A Lazarus, Marie-Belle El Mdawar, Sam M Janes, Robert E Hynds","doi":"10.1152/ajplung.00047.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the <i>TP63</i>, <i>MUC5AC</i>, and <i>FOXJ1</i> genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid (\"bronchosphere\") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.<b>NEW & NOTEWORTHY</b> Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L587-L599"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00047.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ("bronchosphere") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.NEW & NOTEWORTHY Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物发光监测气道上皮细胞分化的慢病毒工具包。
基底细胞是气道上皮的成体干细胞,可再生分化细胞群,包括进行粘液纤毛清除的粘液分泌细胞和纤毛细胞。人类基底细胞可在体外增殖并产生分化上皮。然而,对气道上皮分化的研究大多依赖于免疫组化或免疫荧光染色法,这意味着缺乏一种动态的方法,而且定量数据也很有限。在这里,我们使用慢病毒报告基因方法,用生物发光报告基因构建体转导原代人基底细胞,以纵向监测气道上皮分化。我们生成了由 TP63、MUC5AC 和 FOXJ1 基因启动子序列驱动的三种构建体,分别用于定量评估基底细胞、粘液分泌细胞和纤毛细胞的丰度。我们通过跟踪气液界面和类器官("支气管球")培养物中基底细胞的分化验证了这些构建体。转导细胞对白细胞介素 13(IL-13,增加粘液分泌分化和粘液分泌)和 IL-6(增加纤毛细胞分化)的刺激也有适当的反应。这些构建物是监测原代上皮细胞和/或诱导多能干细胞(iPSC)细胞培养物中气道上皮细胞分化的新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1