Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China

IF 3.1 2区 生物学 Q2 ECOLOGY Heredity Pub Date : 2024-08-13 DOI:10.1038/s41437-024-00714-0
Haowen Tian, Hongxiang Zhang, Xiaojun Shi, Wenhui Ma, Jian Zhang
{"title":"Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China","authors":"Haowen Tian, Hongxiang Zhang, Xiaojun Shi, Wenhui Ma, Jian Zhang","doi":"10.1038/s41437-024-00714-0","DOIUrl":null,"url":null,"abstract":"Arid ecosystems, characterized by severe water scarcity, play a crucial role in preserving Earth’s biodiversity and resources. The Tarim Basin in Northwestern China, a typical arid region isolated by the Tianshan Mountains and expansive deserts, provides a special study area for investigating how plant response and adaptation to such environments. Tamarix hispida, a species well adapted to saline-alkaline and drought conditions, dominates in the saline-alkali lands of the Tarim Basin. This study aims to examine the genetic diversity and environmental adaptation of T. hispida in the Tarim Basin. Genomic SNPs for a total of 160 individuals from 17 populations were generated using dd-RAD sequencing approach. Population genetic structure and genetic diversity were analyzed by methods including ADMIXTURE, PCA, and phylogenetic tree. Environmental association analysis (EAA) was performed using LFMM and RDA analyses. The results revealed two major genetic lineages with geographical substitution patterns from west to east, indicating significant gene flow and hybridization. Environmental factors such as Precipitation Seasonality (bio15) and Topsoil Sand Fraction (T_SAND) significantly shaped allele frequencies, supporting the species’ genetic adaptability. Several genes associated with environmental adaptation were identified and annotated, highlighting physiological and metabolic processes crucial for survival in arid conditions. The study highlights the role of geographical isolation and environmental factors in shaping genetic structure and adaptive evolution. The identified adaptive genes related to stress tolerance emphasize the species’ resilience and highlight the importance of specific physiological and metabolic pathways.","PeriodicalId":12991,"journal":{"name":"Heredity","volume":"133 5","pages":"298-307"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heredity","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41437-024-00714-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arid ecosystems, characterized by severe water scarcity, play a crucial role in preserving Earth’s biodiversity and resources. The Tarim Basin in Northwestern China, a typical arid region isolated by the Tianshan Mountains and expansive deserts, provides a special study area for investigating how plant response and adaptation to such environments. Tamarix hispida, a species well adapted to saline-alkaline and drought conditions, dominates in the saline-alkali lands of the Tarim Basin. This study aims to examine the genetic diversity and environmental adaptation of T. hispida in the Tarim Basin. Genomic SNPs for a total of 160 individuals from 17 populations were generated using dd-RAD sequencing approach. Population genetic structure and genetic diversity were analyzed by methods including ADMIXTURE, PCA, and phylogenetic tree. Environmental association analysis (EAA) was performed using LFMM and RDA analyses. The results revealed two major genetic lineages with geographical substitution patterns from west to east, indicating significant gene flow and hybridization. Environmental factors such as Precipitation Seasonality (bio15) and Topsoil Sand Fraction (T_SAND) significantly shaped allele frequencies, supporting the species’ genetic adaptability. Several genes associated with environmental adaptation were identified and annotated, highlighting physiological and metabolic processes crucial for survival in arid conditions. The study highlights the role of geographical isolation and environmental factors in shaping genetic structure and adaptive evolution. The identified adaptive genes related to stress tolerance emphasize the species’ resilience and highlight the importance of specific physiological and metabolic pathways.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国西北干旱地区塔里木盆地柽柳种群遗传多样性和环境适应性。
以严重缺水为特征的干旱生态系统在保护地球生物多样性和资源方面发挥着至关重要的作用。中国西北部的塔里木盆地是一个典型的干旱地区,被天山山脉和广袤的沙漠隔离开来,为研究植物如何应对和适应这种环境提供了一个特殊的研究区域。柽柳是一种非常适合盐碱和干旱环境的植物,在塔里木盆地的盐碱地中占主导地位。本研究旨在考察塔里木盆地柽柳的遗传多样性和环境适应性。采用 dd-RAD 测序方法对 17 个种群的 160 个个体进行了基因组 SNPs 测序。采用 ADMIXTURE、PCA 和系统发生树等方法分析了种群遗传结构和遗传多样性。利用 LFMM 和 RDA 分析方法进行了环境关联分析(EAA)。结果显示,两个主要遗传系的地理替代模式由西向东,表明存在显著的基因流动和杂交。降水季节性(bio15)和表土含沙量(T_SAND)等环境因素显著影响了等位基因频率,支持了该物种的遗传适应性。研究发现并注释了与环境适应有关的几个基因,突出了在干旱条件下生存的关键生理和代谢过程。该研究强调了地理隔离和环境因素在形成遗传结构和适应性进化中的作用。所发现的与耐压性相关的适应性基因强调了该物种的恢复能力,并突出了特定生理和代谢途径的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heredity
Heredity 生物-进化生物学
CiteScore
7.50
自引率
2.60%
发文量
84
审稿时长
4-8 weeks
期刊介绍: Heredity is the official journal of the Genetics Society. It covers a broad range of topics within the field of genetics and therefore papers must address conceptual or applied issues of interest to the journal''s wide readership
期刊最新文献
Kinship clustering within an ecologically diverse killer whale metapopulation. Incorporating spatial and genetic competition into breeding pipelines with the R package gencomp. The evolution of preferred male traits, female preference and the G matrix: "Toto, I've a feeling we're not in Kansas anymore". Maternal effects in the model system Daphnia: the ecological past meets the epigenetic future. Infection pattern of male-killing viruses alters phenotypes in the tea tortrix moth Homona magnanima.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1