{"title":"Validation of multispectral imaging-based tissue oxygen saturation detecting system for wound healing recognition on open wounds.","authors":"Yi-Syuan Shin, Kuo-Shu Hung, Chung-Te Tsai, Meng-Hsuan Wu, Chih-Lung Lin, Yuan-Yu Hsueh","doi":"10.1117/1.JBO.29.8.086004","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The multispectral imaging-based tissue oxygen saturation detecting (TOSD) system offers deeper penetration ( <math><mrow><mo>∼</mo> <mn>2</mn></mrow> </math> to 3 mm) and comprehensive tissue oxygen saturation ( <math> <mrow><msub><mi>StO</mi> <mn>2</mn></msub> </mrow> </math> ) assessment and recognizes the wound healing phase at a low cost and computational requirement. The potential for miniaturization and integration of TOSD into telemedicine platforms could revolutionize wound care in the challenging pandemic era.</p><p><strong>Aim: </strong>We aim to validate TOSD's application in detecting <math> <mrow><msub><mi>StO</mi> <mn>2</mn></msub> </mrow> </math> by comparing it with wound closure rates and laser speckle contrast imaging (LSCI), demonstrating TOSD's ability to recognize the wound healing process.</p><p><strong>Approach: </strong>Utilizing a murine model, we compared TOSD with digital photography and LSCI for comprehensive wound observation in five mice with 6-mm back wounds. Sequential biochemical analysis of wound discharge was investigated for the translational relevance of TOSD.</p><p><strong>Results: </strong>TOSD demonstrated constant signals on unwounded skin with differential changes on open wounds. Compared with LSCI, TOSD provides indicative recognition of the proliferative phase during wound healing, with a higher correlation coefficient to wound closure rate (TOSD: 0.58; LSCI: 0.44). <math> <mrow><msub><mi>StO</mi> <mn>2</mn></msub> </mrow> </math> detected by TOSD was further correlated with proliferative phase angiogenesis markers.</p><p><strong>Conclusions: </strong>Our findings suggest TOSD's enhanced utility in wound management protocols, evaluating clinical staging and therapeutic outcomes. By offering a noncontact, convenient monitoring tool, TOSD can be applied to telemedicine, aiming to advance wound care and regeneration, potentially improving patient outcomes and reducing healthcare costs associated with chronic wounds.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 8","pages":"086004"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.8.086004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: The multispectral imaging-based tissue oxygen saturation detecting (TOSD) system offers deeper penetration ( to 3 mm) and comprehensive tissue oxygen saturation ( ) assessment and recognizes the wound healing phase at a low cost and computational requirement. The potential for miniaturization and integration of TOSD into telemedicine platforms could revolutionize wound care in the challenging pandemic era.
Aim: We aim to validate TOSD's application in detecting by comparing it with wound closure rates and laser speckle contrast imaging (LSCI), demonstrating TOSD's ability to recognize the wound healing process.
Approach: Utilizing a murine model, we compared TOSD with digital photography and LSCI for comprehensive wound observation in five mice with 6-mm back wounds. Sequential biochemical analysis of wound discharge was investigated for the translational relevance of TOSD.
Results: TOSD demonstrated constant signals on unwounded skin with differential changes on open wounds. Compared with LSCI, TOSD provides indicative recognition of the proliferative phase during wound healing, with a higher correlation coefficient to wound closure rate (TOSD: 0.58; LSCI: 0.44). detected by TOSD was further correlated with proliferative phase angiogenesis markers.
Conclusions: Our findings suggest TOSD's enhanced utility in wound management protocols, evaluating clinical staging and therapeutic outcomes. By offering a noncontact, convenient monitoring tool, TOSD can be applied to telemedicine, aiming to advance wound care and regeneration, potentially improving patient outcomes and reducing healthcare costs associated with chronic wounds.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.