{"title":"Gut microbiota, vitamin A deficiency and autism spectrum disorder: an interconnected trio - a systematic review.","authors":"Fatima Ezzahra Kacimi, Latifa Didou, Soumia Ed Day, Fatima Zahra Azzaoui, Mhamed Ramchoun, Hicham Berrougui, Hanane Khalki, Samira Boulbaroud","doi":"10.1080/1028415X.2024.2389498","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating evidence proves that children with autism have gastrointestinal problems. However, a significant difference in gut microbiota (GM) exists between autistic and non-autistic children. These changes in the GM may stem from several factors. Recently, researchers focused on nutritional factors, especially vitamin deficiency. Thus, our systematic review investigates the connections among autism, GM alterations, and vitamin A deficiency (VAD), by analyzing studies sourced from PubMed and Embase databases spanning from 2010 to 2022. Adhering to PRISMA guidelines, we meticulously selected 19 pertinent studies that established links between autism and GM changes or between autism and VAD. Our findings uniformly point to significant alterations in the GM of individuals with autism, indicating these changes as promising biomarkers for the disorder. Despite the consistent association of GM alterations with autism, our analysis revealed no notable differences in GM composition between individuals with autism and those experiencing VAD. This suggests that VAD, especially when encountered early in life, might play a role in the onset of autism. Furthermore, our review underscores a distinct correlation between reduced levels of retinoic acid in children with autism, a disparity that could relate to the severity of autism symptoms. The implications of our findings are twofold: they not only reinforce the significance of GM alterations as potential diagnostic markers but also spotlight the critical need for further research into nutritional interventions. Specifically, vitamin A supplementation emerges as a promising avenue for alleviating autism symptoms, warranting deeper investigation into its therapeutic potential.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutritional Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1028415X.2024.2389498","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence proves that children with autism have gastrointestinal problems. However, a significant difference in gut microbiota (GM) exists between autistic and non-autistic children. These changes in the GM may stem from several factors. Recently, researchers focused on nutritional factors, especially vitamin deficiency. Thus, our systematic review investigates the connections among autism, GM alterations, and vitamin A deficiency (VAD), by analyzing studies sourced from PubMed and Embase databases spanning from 2010 to 2022. Adhering to PRISMA guidelines, we meticulously selected 19 pertinent studies that established links between autism and GM changes or between autism and VAD. Our findings uniformly point to significant alterations in the GM of individuals with autism, indicating these changes as promising biomarkers for the disorder. Despite the consistent association of GM alterations with autism, our analysis revealed no notable differences in GM composition between individuals with autism and those experiencing VAD. This suggests that VAD, especially when encountered early in life, might play a role in the onset of autism. Furthermore, our review underscores a distinct correlation between reduced levels of retinoic acid in children with autism, a disparity that could relate to the severity of autism symptoms. The implications of our findings are twofold: they not only reinforce the significance of GM alterations as potential diagnostic markers but also spotlight the critical need for further research into nutritional interventions. Specifically, vitamin A supplementation emerges as a promising avenue for alleviating autism symptoms, warranting deeper investigation into its therapeutic potential.
期刊介绍:
Nutritional Neuroscience is an international, interdisciplinary broad-based, online journal for reporting both basic and clinical research in the field of nutrition that relates to the central and peripheral nervous system. Studies may include the role of different components of normal diet (protein, carbohydrate, fat, moderate use of alcohol, etc.), dietary supplements (minerals, vitamins, hormones, herbs, etc.), and food additives (artificial flavours, colours, sweeteners, etc.) on neurochemistry, neurobiology, and behavioural biology of all vertebrate and invertebrate organisms. Ideally this journal will serve as a forum for neuroscientists, nutritionists, neurologists, psychiatrists, and those interested in preventive medicine.