Qian Xu, Qin Zheng, Xiang Cui, Andrew Cleland, Juan Hincapie, Srinivasa N Raja, Xinzhong Dong, Yun Guan
{"title":"Visualizing the modulation of neurokinin 1 receptor-positive neurons in the superficial dorsal horn by spinal cord stimulation in vivo.","authors":"Qian Xu, Qin Zheng, Xiang Cui, Andrew Cleland, Juan Hincapie, Srinivasa N Raja, Xinzhong Dong, Yun Guan","doi":"10.1097/j.pain.0000000000003361","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Spinal cord stimulation (SCS) is an effective modality for pain treatment, yet its underlying mechanisms remain elusive. Neurokinin 1 receptor-positive (NK1R + ) neurons in spinal lamina I play a pivotal role in pain transmission. To enhance our mechanistic understanding of SCS-induced analgesia, we investigated how different SCS paradigms modulate the activation of NK1R + neurons, by developing NK1R-Cre;GCaMP6s transgenic mice and using in vivo calcium imaging of superficial NK1R + neurons under anesthesia (1.5% isoflurane). Neurokinin 1 receptor-positive neurons in the lumbar spinal cord (L4-5) showed a greater activation by electrical test stimulation (TS, 3.0 mA, 1 Hz) at the hindpaw at 2 weeks after tibia-sparing nerve injury (SNI-t) than in naïve mice. Spinal cord stimulation was then delivered through a bipolar plate electrode placed epidurally at L1-2 level. The short-term 50-Hz high-intensity SCS (80% motor threshold [MoT], 10 minutes) induced robust and prolonged inhibition of NK1R + neuronal responses to TS in both naïve and SNI-t mice. The 30-minute 50-Hz and 900-Hz SCS applied at moderate intensity (50% MoT) also significantly inhibited neuronal responses in SNI-t mice. However, at low intensity (20% MoT), the 30-minute 900-Hz SCS only induced persistent neuronal inhibition in naïve mice, but not in SNI-t mice. In conclusion, both 10-minute high-intensity SCS and 30-minute SCS at moderate intensity inhibit the activation of superficial NK1R + neurons, potentially attenuating spinal nociceptive transmission. Furthermore, in vivo calcium imaging of NK1R + neurons provides a new approach for exploring the spinal neuronal mechanisms of pain inhibition by neuromodulation pain therapies.</p>","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":" ","pages":"428-437"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003361","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Spinal cord stimulation (SCS) is an effective modality for pain treatment, yet its underlying mechanisms remain elusive. Neurokinin 1 receptor-positive (NK1R + ) neurons in spinal lamina I play a pivotal role in pain transmission. To enhance our mechanistic understanding of SCS-induced analgesia, we investigated how different SCS paradigms modulate the activation of NK1R + neurons, by developing NK1R-Cre;GCaMP6s transgenic mice and using in vivo calcium imaging of superficial NK1R + neurons under anesthesia (1.5% isoflurane). Neurokinin 1 receptor-positive neurons in the lumbar spinal cord (L4-5) showed a greater activation by electrical test stimulation (TS, 3.0 mA, 1 Hz) at the hindpaw at 2 weeks after tibia-sparing nerve injury (SNI-t) than in naïve mice. Spinal cord stimulation was then delivered through a bipolar plate electrode placed epidurally at L1-2 level. The short-term 50-Hz high-intensity SCS (80% motor threshold [MoT], 10 minutes) induced robust and prolonged inhibition of NK1R + neuronal responses to TS in both naïve and SNI-t mice. The 30-minute 50-Hz and 900-Hz SCS applied at moderate intensity (50% MoT) also significantly inhibited neuronal responses in SNI-t mice. However, at low intensity (20% MoT), the 30-minute 900-Hz SCS only induced persistent neuronal inhibition in naïve mice, but not in SNI-t mice. In conclusion, both 10-minute high-intensity SCS and 30-minute SCS at moderate intensity inhibit the activation of superficial NK1R + neurons, potentially attenuating spinal nociceptive transmission. Furthermore, in vivo calcium imaging of NK1R + neurons provides a new approach for exploring the spinal neuronal mechanisms of pain inhibition by neuromodulation pain therapies.
期刊介绍:
PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.