Navigating interpretability and alpha control in GF-KCSD testing with measurement error: A Kernel approach

Elham Afzali, Saman Muthukumarana, Liqun Wang
{"title":"Navigating interpretability and alpha control in GF-KCSD testing with measurement error: A Kernel approach","authors":"Elham Afzali,&nbsp;Saman Muthukumarana,&nbsp;Liqun Wang","doi":"10.1016/j.mlwa.2024.100581","DOIUrl":null,"url":null,"abstract":"<div><p>The Gradient-Free Kernel Conditional Stein Discrepancy (GF-KCSD), presented in our prior work, represents a significant advancement in goodness-of-fit testing for conditional distributions. This method offers a robust alternative to previous gradient-based techniques, specially when the gradient calculation is intractable or computationally expensive. In this study, we explore previously unexamined aspects of GF-KCSD, with a particular focus on critical values and test power—essential components for effective hypothesis testing. We also present novel investigation on the impact of measurement errors on the performance of GF-KCSD in comparison to established benchmarks, enhancing our understanding of its resilience to these errors. Through controlled experiments using synthetic data, we demonstrate GF-KCSD’s superior ability to control type-I error rates and maintain high statistical power, even in the presence of measurement inaccuracies. Our empirical evaluation extends to real-world datasets, including brain MRI data. The findings confirm that GF-KCSD performs comparably to KCSD in hypothesis testing effectiveness while requiring significantly less computational time. This demonstrates GF-KCSD’s capability as an efficient tool for analyzing complex data, enhancing its value for scenarios that demand rapid and robust statistical analysis.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100581"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000574/pdfft?md5=64343827db2919a23c638fc11f2df65c&pid=1-s2.0-S2666827024000574-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Gradient-Free Kernel Conditional Stein Discrepancy (GF-KCSD), presented in our prior work, represents a significant advancement in goodness-of-fit testing for conditional distributions. This method offers a robust alternative to previous gradient-based techniques, specially when the gradient calculation is intractable or computationally expensive. In this study, we explore previously unexamined aspects of GF-KCSD, with a particular focus on critical values and test power—essential components for effective hypothesis testing. We also present novel investigation on the impact of measurement errors on the performance of GF-KCSD in comparison to established benchmarks, enhancing our understanding of its resilience to these errors. Through controlled experiments using synthetic data, we demonstrate GF-KCSD’s superior ability to control type-I error rates and maintain high statistical power, even in the presence of measurement inaccuracies. Our empirical evaluation extends to real-world datasets, including brain MRI data. The findings confirm that GF-KCSD performs comparably to KCSD in hypothesis testing effectiveness while requiring significantly less computational time. This demonstrates GF-KCSD’s capability as an efficient tool for analyzing complex data, enhancing its value for scenarios that demand rapid and robust statistical analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在有测量误差的 GF-KCSD 测试中控制可解释性和阿尔法:核方法
无梯度核条件斯泰因差异(GF-KCSD)在我们之前的工作中已经提出,它代表了条件分布拟合优度测试的一大进步。这种方法为以前基于梯度的技术提供了一种稳健的替代方法,尤其是在梯度计算难以实现或计算成本高昂的情况下。在本研究中,我们探索了 GF-KCSD 以前未曾研究过的方面,特别是临界值和检验功率--有效假设检验的重要组成部分。与已有的基准相比,我们还对测量误差对 GF-KCSD 性能的影响进行了新颖的研究,从而加深了我们对 GF-KCSD 抵御这些误差能力的理解。通过使用合成数据进行受控实验,我们证明了 GF-KCSD 即使在存在测量误差的情况下,也能控制 I 类错误率并保持较高的统计能力。我们的实证评估扩展到了真实世界的数据集,包括脑磁共振成像数据。结果证实,GF-KCSD 在假设检验有效性方面的表现与 KCSD 不相上下,而所需的计算时间却大大减少。这证明了 GF-KCSD 作为分析复杂数据的高效工具的能力,提高了它在需要快速、稳健统计分析的应用场景中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1