Some children left behind: Variation in the effects of an educational intervention

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-07-01 DOI:10.1016/j.jeconom.2021.12.010
Julie Buhl-Wiggers , Jason T. Kerwin , Juan Muñoz-Morales , Jeffrey Smith , Rebecca Thornton
{"title":"Some children left behind: Variation in the effects of an educational intervention","authors":"Julie Buhl-Wiggers ,&nbsp;Jason T. Kerwin ,&nbsp;Juan Muñoz-Morales ,&nbsp;Jeffrey Smith ,&nbsp;Rebecca Thornton","doi":"10.1016/j.jeconom.2021.12.010","DOIUrl":null,"url":null,"abstract":"<div><p>We document substantial variation in the effects of a highly-effective literacy program<span><span> in northern Uganda<span>. The program increases test scores by 1.4 SDs on average, but standard statistical bounds show that the impact standard deviation exceeds 1.0 SD. This implies that the variation in effects across our students is wider than the spread of mean effects across all randomized evaluations of developing country education interventions in the literature. This very effective program does indeed leave some students behind. At the same time, we do not learn much from our analyses that attempt to determine which students benefit more or less from the program. We reject rank preservation, and the weaker assumption of stochastic increasingness leaves wide bounds on quantile-specific average </span></span>treatment effects. Neither conventional nor machine-learning approaches to estimating systematic heterogeneity capture more than a small fraction of the variation in impacts given our available candidate moderators.</span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"243 1","pages":"Article 105256"},"PeriodicalIF":9.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407622000355","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We document substantial variation in the effects of a highly-effective literacy program in northern Uganda. The program increases test scores by 1.4 SDs on average, but standard statistical bounds show that the impact standard deviation exceeds 1.0 SD. This implies that the variation in effects across our students is wider than the spread of mean effects across all randomized evaluations of developing country education interventions in the literature. This very effective program does indeed leave some students behind. At the same time, we do not learn much from our analyses that attempt to determine which students benefit more or less from the program. We reject rank preservation, and the weaker assumption of stochastic increasingness leaves wide bounds on quantile-specific average treatment effects. Neither conventional nor machine-learning approaches to estimating systematic heterogeneity capture more than a small fraction of the variation in impacts given our available candidate moderators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些留守儿童:教育干预效果的差异
我们记录了乌干达北部一项高效扫盲计划效果的巨大差异。该计划使考试成绩平均提高了 1.4 个标准差,但标准统计界限显示,影响标准差超过了 1.0 个标准差。这意味着,我们的学生之间的效果差异比文献中所有发展中国家教育干预随机评估的平均效果差异都要大。这个非常有效的项目确实让一些学生落在后面。与此同时,我们并没有从试图确定哪些学生从该项目中获益更多或更少的分析中获益良多。我们否定了等级保留,而较弱的随机递增假设也为特定量级的平均治疗效果留下了较大的界限。考虑到我们现有的候选调节因子,无论是传统方法还是机器学习方法,在估计系统异质性时都只能捕捉到影响变化的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1