{"title":"De Casteljau's geometric approach to geometric design still alive","authors":"Rachid Ait-Haddou , Marie-Laurence Mazure","doi":"10.1016/j.cagd.2024.102378","DOIUrl":null,"url":null,"abstract":"<div><p>With great enthusiasm and admiration we would like to pay tribute to Paul de Faget de Casteljau for his essential contribution to CAGD. Motivated by the development of automated <em>human-computer collaboration</em> for car industry, not only was he the very first pioneer in this field, but his initial geometric approach to creating <em>shapes from poles</em> was even undeniably the simplest and most remarkably effective. Two crucial points in this approach are to keep in mind: firstly, the idea of splitting one variable into several variables to facilitate the algorithmic construction of curves; secondly, the possibility of controlling shapes by means of osculating flats and corner-cutting algorithms. The present article is a partial survey on Chebyshevian blossoms intended to show that his ideas are still alive.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102378"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001122","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
With great enthusiasm and admiration we would like to pay tribute to Paul de Faget de Casteljau for his essential contribution to CAGD. Motivated by the development of automated human-computer collaboration for car industry, not only was he the very first pioneer in this field, but his initial geometric approach to creating shapes from poles was even undeniably the simplest and most remarkably effective. Two crucial points in this approach are to keep in mind: firstly, the idea of splitting one variable into several variables to facilitate the algorithmic construction of curves; secondly, the possibility of controlling shapes by means of osculating flats and corner-cutting algorithms. The present article is a partial survey on Chebyshevian blossoms intended to show that his ideas are still alive.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.