High-order spline finite element method for solving time-dependent electromagnetic waves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-08 DOI:10.1016/j.apnum.2024.08.002
Imad El-Barkani , Imane El-Hadouti , Mohamed Addam , Mohammed Seaid
{"title":"High-order spline finite element method for solving time-dependent electromagnetic waves","authors":"Imad El-Barkani ,&nbsp;Imane El-Hadouti ,&nbsp;Mohamed Addam ,&nbsp;Mohammed Seaid","doi":"10.1016/j.apnum.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose a high-order spline finite element method for solving a class of time-dependent electromagnetic waves and its associated frequency-domain approach. A Fourier transform and its inverse are used for the time integration of the wave problem. The spatial discretization is performed using a partitioned mesh with tensorial spline functions to form bases of the discrete solution in the variational finite element space. Quadrature methods such as the Gauss-Hermite quadrature are implemented in the inverse Fourier transform to compute numerical solutions of the time-dependent electromagnetic waves. In the present study we carry out a rigorous convergence analysis and establish error estimates for the wave solution in the relevant norms. We also provide a full algorithmic description of the method and assess its performance by solving several test examples of time-dependent electromagnetic waves with known analytical solutions. The method is shown to verify the theoretical estimates and to provide highly accurate and efficient simulations. We also evaluate the computational performance of the proposed method for solving a problem of wave transmission through non-homogeneous materials. The obtained computational results confirm the excellent convergence, high accuracy and applicability of the proposed spline finite element method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a high-order spline finite element method for solving a class of time-dependent electromagnetic waves and its associated frequency-domain approach. A Fourier transform and its inverse are used for the time integration of the wave problem. The spatial discretization is performed using a partitioned mesh with tensorial spline functions to form bases of the discrete solution in the variational finite element space. Quadrature methods such as the Gauss-Hermite quadrature are implemented in the inverse Fourier transform to compute numerical solutions of the time-dependent electromagnetic waves. In the present study we carry out a rigorous convergence analysis and establish error estimates for the wave solution in the relevant norms. We also provide a full algorithmic description of the method and assess its performance by solving several test examples of time-dependent electromagnetic waves with known analytical solutions. The method is shown to verify the theoretical estimates and to provide highly accurate and efficient simulations. We also evaluate the computational performance of the proposed method for solving a problem of wave transmission through non-homogeneous materials. The obtained computational results confirm the excellent convergence, high accuracy and applicability of the proposed spline finite element method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于求解时变电磁波的高阶样条线有限元法
在本文中,我们提出了一种用于求解一类时变电磁波的高阶样条线有限元方法及其相关的频域方法。傅立叶变换及其逆变换用于波问题的时间积分。空间离散化是利用分区网格和张量样条函数在变分有限元空间中形成离散解的基数。在反傅里叶变换中采用高斯-赫米特正交等正交方法来计算时变电磁波的数值解。在本研究中,我们进行了严格的收敛分析,并建立了相关规范下的波解误差估计。我们还提供了该方法的完整算法描述,并通过求解几个已知分析解的时变电磁波测试示例来评估其性能。结果表明,该方法验证了理论估计值,并提供了高度精确和高效的模拟。我们还评估了所提方法在解决波通过非均质材料传输问题时的计算性能。计算结果证实了所提出的花键有限元方法具有出色的收敛性、高精度和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1