{"title":"Heterogeneous network link prediction based on network schema and cross-neighborhood attention","authors":"Pengtao Wang , Jian Shu , Linlan Liu","doi":"10.1016/j.jksuci.2024.102154","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous network link prediction is a hot topic in the analysis of networks. It aims to predict missing links in the network by utilizing the rich semantic information present in the heterogeneous network, thereby enhancing the effectiveness of relevant data mining tasks. Existing heterogeneous network link prediction methods utilize meta-paths or meta-graphs to extract semantic information, heavily relying on the priori knowledge. This paper proposes a heterogeneous network link prediction based on network schema and cross-neighborhood attention method (HNLP-NSCA). The heterogeneous node features are projected into a shared latent vector space using fully connected layers. To resolve the issue of prior knowledge dependence on meta-path, the semantic information is extracted by using network schema structures uniquely in heterogeneous networks. Node features are extracted based on the relevant network schema instances, avoiding the problem of meta-path selection. The neighborhood interaction information of input node pairs is sensed via cross-neighborhood attention, strengthening the nonlinear mapping capability of the link prediction. The resulting cross-neighborhood interaction vectors are combined with the node feature vectors and fed into a multilayer perceptron for link prediction. Experimental results on four real-world datasets demonstrate that the proposed HNLP-NSCA mothed outperforms the baseline models.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102154"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131915782400243X/pdfft?md5=269ef08ce93e8cf6ae0df3df90173eac&pid=1-s2.0-S131915782400243X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131915782400243X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous network link prediction is a hot topic in the analysis of networks. It aims to predict missing links in the network by utilizing the rich semantic information present in the heterogeneous network, thereby enhancing the effectiveness of relevant data mining tasks. Existing heterogeneous network link prediction methods utilize meta-paths or meta-graphs to extract semantic information, heavily relying on the priori knowledge. This paper proposes a heterogeneous network link prediction based on network schema and cross-neighborhood attention method (HNLP-NSCA). The heterogeneous node features are projected into a shared latent vector space using fully connected layers. To resolve the issue of prior knowledge dependence on meta-path, the semantic information is extracted by using network schema structures uniquely in heterogeneous networks. Node features are extracted based on the relevant network schema instances, avoiding the problem of meta-path selection. The neighborhood interaction information of input node pairs is sensed via cross-neighborhood attention, strengthening the nonlinear mapping capability of the link prediction. The resulting cross-neighborhood interaction vectors are combined with the node feature vectors and fed into a multilayer perceptron for link prediction. Experimental results on four real-world datasets demonstrate that the proposed HNLP-NSCA mothed outperforms the baseline models.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.