Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats
{"title":"Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats","authors":"Eva C. Bach, Jeff L. Weiner","doi":"10.1016/j.ynstr.2024.100665","DOIUrl":null,"url":null,"abstract":"<div><p>With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions. Prior studies from our laboratory revealed that, while withdrawal from chronic intermittent ethanol (CIE), a commonly used model of AUD, increased excitability in the ventral hippocampus (vHC) of male rats, this same treatment had the opposite effect in females. A follow-up study not only expanded on the synaptic mechanisms of these findings in male rats, but also established a CIE-dependent increase in the excitatory-inhibitory (E-I) balance of a glutamatergic projection from the basolateral amygdala to vHC (BLA-vHC). This pathway modulates anxiety-like behavior and could help explain the comorbid occurrence of anxiety disorders in individuals suffering from AUD. The present study sought to conduct a similar analysis of CIE effects on both synaptic mechanisms in the vHC and adaptations in the BLA-vHC pathway of female rats. Our findings indicate that CIE increases the strength of inhibitory neurotransmission in the vHC and that this sex-specific adaptation blocks, or at least delays, the increases in intrinsic vHC excitability and BLA-vHC synaptic transmission observed in males. Our findings establish the BLA-vHC pathway and the vHC as important circuitry to consider for future studies directed at identifying sex-dependent therapeutic approaches to AUD.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"32 ","pages":"Article 100665"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000614/pdfft?md5=90039c322dcf18fccf524ceba4252eb5&pid=1-s2.0-S2352289524000614-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000614","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions. Prior studies from our laboratory revealed that, while withdrawal from chronic intermittent ethanol (CIE), a commonly used model of AUD, increased excitability in the ventral hippocampus (vHC) of male rats, this same treatment had the opposite effect in females. A follow-up study not only expanded on the synaptic mechanisms of these findings in male rats, but also established a CIE-dependent increase in the excitatory-inhibitory (E-I) balance of a glutamatergic projection from the basolateral amygdala to vHC (BLA-vHC). This pathway modulates anxiety-like behavior and could help explain the comorbid occurrence of anxiety disorders in individuals suffering from AUD. The present study sought to conduct a similar analysis of CIE effects on both synaptic mechanisms in the vHC and adaptations in the BLA-vHC pathway of female rats. Our findings indicate that CIE increases the strength of inhibitory neurotransmission in the vHC and that this sex-specific adaptation blocks, or at least delays, the increases in intrinsic vHC excitability and BLA-vHC synaptic transmission observed in males. Our findings establish the BLA-vHC pathway and the vHC as important circuitry to consider for future studies directed at identifying sex-dependent therapeutic approaches to AUD.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.