Nadia Kashif , Boris Albijanic , Jing Jing Xu , Teresa McGrath , Muhammad Kashif Nazir , Michael Hitch , Bogale Tadesse
{"title":"Investigating the drying behaviour of clay-containing slurries","authors":"Nadia Kashif , Boris Albijanic , Jing Jing Xu , Teresa McGrath , Muhammad Kashif Nazir , Michael Hitch , Bogale Tadesse","doi":"10.1016/j.clay.2024.107500","DOIUrl":null,"url":null,"abstract":"<div><p>Managing clay-containing slurries during drying process remains a persistent challenge in various industries. Despite challenges of drying clay-containing-slurries, limited information is available. The aim of this study is to explore the drying performance of slurries containing kaolin and bentonite and gain insights into the underlying drying mechanisms. The research presented integrates drying experiments, rheology measurements, settling experiments, zeta potential measurements, FTIR, TGA/DTA, and SEM analysis. Bentonite-containing slurries retained more moisture due to their high-water adsorption capacity, with higher bentonite percentages extending drying times. The addition of Ca<sup>2+</sup> ions reduced moisture content by replacing Na<sup>+</sup> ions with smaller Ca<sup>2+</sup> ions, making the slurries less viscous. The addition of Ca<sup>2+</sup> disrupted the gel-like structure of bentonite as confirmed by SEM and FTIR. In contrast, kaolin-containing slurries maintain lower moisture levels owing to the non-swelling structure of kaolinite. SEM showed the formation of agglomerates for kaolin when Ca<sup>2+</sup> was added The addition of Ca<sup>2+</sup> ions had a subtle impact on drying rates, despite a slight increase in slurry viscosity probably due to the agglomeration of kaolinite particles. Both slurries exhibited three drying phases: rapid drying due to high moisture, a moderate phase with reduced rates, and a final phase of slowed drying as tightly bound moisture was harder to remove. This paper demonstrated the significance of understanding the drying processes of clay-containing slurries to enhance the overall drying efficiency.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107500"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169131724002485/pdfft?md5=b227e6e30170c9c10dc63778f4c55530&pid=1-s2.0-S0169131724002485-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724002485","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Managing clay-containing slurries during drying process remains a persistent challenge in various industries. Despite challenges of drying clay-containing-slurries, limited information is available. The aim of this study is to explore the drying performance of slurries containing kaolin and bentonite and gain insights into the underlying drying mechanisms. The research presented integrates drying experiments, rheology measurements, settling experiments, zeta potential measurements, FTIR, TGA/DTA, and SEM analysis. Bentonite-containing slurries retained more moisture due to their high-water adsorption capacity, with higher bentonite percentages extending drying times. The addition of Ca2+ ions reduced moisture content by replacing Na+ ions with smaller Ca2+ ions, making the slurries less viscous. The addition of Ca2+ disrupted the gel-like structure of bentonite as confirmed by SEM and FTIR. In contrast, kaolin-containing slurries maintain lower moisture levels owing to the non-swelling structure of kaolinite. SEM showed the formation of agglomerates for kaolin when Ca2+ was added The addition of Ca2+ ions had a subtle impact on drying rates, despite a slight increase in slurry viscosity probably due to the agglomeration of kaolinite particles. Both slurries exhibited three drying phases: rapid drying due to high moisture, a moderate phase with reduced rates, and a final phase of slowed drying as tightly bound moisture was harder to remove. This paper demonstrated the significance of understanding the drying processes of clay-containing slurries to enhance the overall drying efficiency.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...