Loss of immune cell identity with age inferred from large atlases of single cell transcriptomes.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-08-14 DOI:10.1111/acel.14306
Erin Connolly, Tony Pan, Maneesha Aluru, Sriram Chockalingam, Vishal Dhere, Greg Gibson
{"title":"Loss of immune cell identity with age inferred from large atlases of single cell transcriptomes.","authors":"Erin Connolly, Tony Pan, Maneesha Aluru, Sriram Chockalingam, Vishal Dhere, Greg Gibson","doi":"10.1111/acel.14306","DOIUrl":null,"url":null,"abstract":"<p><p>By analyzing two large atlases of almost 4 million cells, we show that immune-senescence involves a gradual loss of cellular identity, reflecting increased cellular heterogeneity, for effector, and cytotoxic immune cells. The effects are largely similar in both males and females and were robustly reproduced in two atlases, one assembled from 35 diverse studies including 678 adults, the other the OneK1K study of 982 adults. Since the mean transcriptional differences among cell-types remain constant across age deciles, there is little evidence for the alternative mechanism of convergence of cell-type identity. Key pathways promoting activation and stemness are down-regulated in aged T cells, while CD8 TEM and CD4 CTLs exhibited elevated inflammatory, and cytotoxicity in older individuals. Elevated inflammatory signaling pathways, such as MAPK and TNF-alpha signaling via NF-kB, also occur across all aged immune cells, particularly amongst effector immune cells. This finding of lost transcriptional identity with age carries several implications, spanning from a fundamental biological understanding of aging mechanisms to clinical perspectives on the efficacy of immunomodulation in elderly people.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14306","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

By analyzing two large atlases of almost 4 million cells, we show that immune-senescence involves a gradual loss of cellular identity, reflecting increased cellular heterogeneity, for effector, and cytotoxic immune cells. The effects are largely similar in both males and females and were robustly reproduced in two atlases, one assembled from 35 diverse studies including 678 adults, the other the OneK1K study of 982 adults. Since the mean transcriptional differences among cell-types remain constant across age deciles, there is little evidence for the alternative mechanism of convergence of cell-type identity. Key pathways promoting activation and stemness are down-regulated in aged T cells, while CD8 TEM and CD4 CTLs exhibited elevated inflammatory, and cytotoxicity in older individuals. Elevated inflammatory signaling pathways, such as MAPK and TNF-alpha signaling via NF-kB, also occur across all aged immune cells, particularly amongst effector immune cells. This finding of lost transcriptional identity with age carries several implications, spanning from a fundamental biological understanding of aging mechanisms to clinical perspectives on the efficacy of immunomodulation in elderly people.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大型单细胞转录组图谱推断出免疫细胞特性随年龄增长而丧失。
通过分析两个包含近 400 万个细胞的大型图谱,我们发现免疫衰老涉及细胞特征的逐渐丧失,反映了效应免疫细胞和细胞毒性免疫细胞异质性的增加。这种效应在男性和女性中基本相似,并在两个图集中得到了有力的再现,其中一个图集由包括 678 名成人在内的 35 项不同研究组成,另一个图集则由包括 982 名成人在内的 OneK1K 研究组成。由于细胞类型之间的平均转录差异在不同年龄段保持不变,因此几乎没有证据证明细胞类型特征趋同的替代机制。促进活化和干性的关键通路在老年 T 细胞中下调,而 CD8 TEM 和 CD4 CTL 在老年人中表现出炎症和细胞毒性升高。炎症信号通路,如通过 NF-kB 的 MAPK 和 TNF-α 信号也在所有老化免疫细胞中出现,尤其是在效应免疫细胞中。随着年龄的增长,转录特性也会丧失,这一发现具有多方面的意义,从对衰老机制的基本生物学理解,到对老年人免疫调节疗效的临床展望,不一而足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Multiomic profiling reveals timing of menopause predicts prefrontal cortex aging and cognitive function. Elevated N-glycosylated cathepsin L impairs oocyte function and contributes to oocyte senescence during reproductive aging. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Microglia-derived Galectin-9 drives amyloid-β pathology in Alzheimer's disease. Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1