Sieving-type Electric Double Layer with Hydrogen Bond Interlocking to Stable Zinc Metal Anode.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-08-15 DOI:10.1002/anie.202411470
Tong Yan, Boyong Wu, Sucheng Liu, Mengli Tao, Jinhui Liang, Minjian Li, Cong Xiang, Zhiming Cui, Li Du, Zhenxing Liang, Huiyu Song
{"title":"Sieving-type Electric Double Layer with Hydrogen Bond Interlocking to Stable Zinc Metal Anode.","authors":"Tong Yan, Boyong Wu, Sucheng Liu, Mengli Tao, Jinhui Liang, Minjian Li, Cong Xiang, Zhiming Cui, Li Du, Zhenxing Liang, Huiyu Song","doi":"10.1002/anie.202411470","DOIUrl":null,"url":null,"abstract":"<p><p>The stability of aqueous zinc metal batteries is significantly affected by side reactions and dendrite growth on the anode interface, which primarily originate from water and anions. Herein, we introduce a multi H-bond site additive, 2, 2'-Sulfonyldiethanol (SDE), into an aqueous electrolyte to construct a sieving-type electric double layer (EDL) by hydrogen bond interlock in order to address these issues. On the one hand, SDE replaces H2O and SO42- anions that are adsorbed on the zinc anode surface, expelling H2O/SO42- from the EDL and thereby reducing the content of H2O/SO42- at the interface. On the other hand, when Zn2+ are de-solvated at the interface during the plating, the strong hydrogen bond interaction between SDE and H2O/SO42- can trap H2O/SO42- from the EDL, further decreasing their content at the interface. This effectively sieves them out of the zinc anode interface and inhibits the side reactions. Moreover, the unique characteristics of trapped SO42- anions can restrict their diffusion, thereby enhancing the transference number of Zn2+ and promoting dendrite-free deposition and growth of Zn. Consequently, utilizing an SDE/ZnSO4 electrolyte enables excellent cycling stability in Zn//Zn symmetrical cells and Zn//MnO2 full cells with lifespans exceeding 3500 h and 2500 cycles respectively.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of aqueous zinc metal batteries is significantly affected by side reactions and dendrite growth on the anode interface, which primarily originate from water and anions. Herein, we introduce a multi H-bond site additive, 2, 2'-Sulfonyldiethanol (SDE), into an aqueous electrolyte to construct a sieving-type electric double layer (EDL) by hydrogen bond interlock in order to address these issues. On the one hand, SDE replaces H2O and SO42- anions that are adsorbed on the zinc anode surface, expelling H2O/SO42- from the EDL and thereby reducing the content of H2O/SO42- at the interface. On the other hand, when Zn2+ are de-solvated at the interface during the plating, the strong hydrogen bond interaction between SDE and H2O/SO42- can trap H2O/SO42- from the EDL, further decreasing their content at the interface. This effectively sieves them out of the zinc anode interface and inhibits the side reactions. Moreover, the unique characteristics of trapped SO42- anions can restrict their diffusion, thereby enhancing the transference number of Zn2+ and promoting dendrite-free deposition and growth of Zn. Consequently, utilizing an SDE/ZnSO4 electrolyte enables excellent cycling stability in Zn//Zn symmetrical cells and Zn//MnO2 full cells with lifespans exceeding 3500 h and 2500 cycles respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与稳定的锌金属阳极氢键互锁的筛分式双电层。
锌金属水性电池的稳定性受到阳极界面副反应和枝晶生长的严重影响,而这些副反应和枝晶生长主要来自水和阴离子。为了解决这些问题,我们在水性电解质中引入了一种多氢键位点添加剂--2, 2'-Sulfonyldiethanol (SDE),通过氢键互锁来构建筛分型电双层 (EDL)。一方面,SDE 取代了锌阳极表面吸附的 H2O 和 SO42- 阴离子,将 H2O/SO42- 从 EDL 中排出,从而降低了界面上的 H2O/SO42- 含量。另一方面,在电镀过程中,当 Zn2+ 在界面上脱溶时,SDE 与 H2O/SO42- 之间的强氢键相互作用会从 EDL 中捕获 H2O/SO42-,从而进一步降低界面上的 H2O/SO42- 含量。这样就能有效地将它们筛出锌阳极界面,抑制副反应的发生。此外,被捕获的 SO42- 阴离子的独特特性还能限制它们的扩散,从而提高 Zn2+ 的转移数量,促进锌的无枝晶沉积和生长。因此,使用 SDE/ZnSO4 电解液可使 Zn//Zn 对称电池和 Zn//MnO2 全电池具有出色的循环稳定性,寿命分别超过 3500 小时和 2500 个循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Correspondence on "A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors". Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode. Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries. Regulating Zn2+ Migration-Diffusion Behavior by Spontaneous Cascade Optimization Strategy for Long-Life and Low N/P Ratio Zinc Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1