Miku Kawahara, Theresa T Cody, Roy P E Yanong, Eileen Henderson, Zeinab Yazdi, Esteban Soto
{"title":"Francisella sciaenopsi sp. nov. isolated from diseased red drum Sciaenops ocellatus in Florida, USA.","authors":"Miku Kawahara, Theresa T Cody, Roy P E Yanong, Eileen Henderson, Zeinab Yazdi, Esteban Soto","doi":"10.3354/dao03803","DOIUrl":null,"url":null,"abstract":"<p><p>Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03803","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.
期刊介绍:
DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically:
-Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens
-Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)-
Diseases due to internal circumstances (innate, idiopathic, genetic)-
Diseases due to proliferative disorders (neoplasms)-
Disease diagnosis, treatment and prevention-
Molecular aspects of diseases-
Nutritional disorders-
Stress and physical injuries-
Epidemiology/epizootiology-
Parasitology-
Toxicology-
Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)-
Diseases as indicators of humanity''s detrimental impact on nature-
Genomics, proteomics and metabolomics of disease-
Immunology and disease prevention-
Animal welfare-
Zoonosis