Tao Li, Ji Feng, Yangyin Chen, Yu Zhang, Han-Cheng Wang, Chuan-Qing Zhang
{"title":"Visualized detection of tobacco anthracnose by RPA-LFD.","authors":"Tao Li, Ji Feng, Yangyin Chen, Yu Zhang, Han-Cheng Wang, Chuan-Qing Zhang","doi":"10.1094/PDIS-07-24-1382-RE","DOIUrl":null,"url":null,"abstract":"<p><p>Anthracnose caused by Colletotrichum spp. is a widespread fungal disease that is detrimental to tobacco growth and inflicts economic damage up to 100 million in tobacco-growing regions in China. An early diagnostic tool is vital for the accurate determination and management of anthracnose in the field. This study investigated the diversity of Colletotrichum spp. on tobacco leaves with anthracnose and developed a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) diagnostic method for the rapid and equipment-independent detection of the main Colletotrichum spp. causing tobacco anthracnose. This assay targeted the chitin synthase gene (chs1) and could be performed in a few minutes (6-10 min). All isolates of C. kastii, C. fructicola and C. gloeosporioides yielded positive results using the RPA-LFD assay, and no cross-reaction occurred with other fungal species from tobacco or other hosts. The detection threshold was 1 pg of genomic DNA under optimal reaction conditions. The entire RPA-LFD assay enabled the detection of pathogen visualization within 30 min without specialized equipment by combining a polyethylene glycol-KOH method for extracting DNA rapidly from tobacco leaves infected with C. kastii, C. fructicola and C. gloeosporioides. Based on these results, the RPA-LFD assay is easy to operate, rapid and equipment independent and is promising for development as a kit to diagnose tobacco anthracnose in resource-limited settings at point-of-care.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-07-24-1382-RE","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anthracnose caused by Colletotrichum spp. is a widespread fungal disease that is detrimental to tobacco growth and inflicts economic damage up to 100 million in tobacco-growing regions in China. An early diagnostic tool is vital for the accurate determination and management of anthracnose in the field. This study investigated the diversity of Colletotrichum spp. on tobacco leaves with anthracnose and developed a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) diagnostic method for the rapid and equipment-independent detection of the main Colletotrichum spp. causing tobacco anthracnose. This assay targeted the chitin synthase gene (chs1) and could be performed in a few minutes (6-10 min). All isolates of C. kastii, C. fructicola and C. gloeosporioides yielded positive results using the RPA-LFD assay, and no cross-reaction occurred with other fungal species from tobacco or other hosts. The detection threshold was 1 pg of genomic DNA under optimal reaction conditions. The entire RPA-LFD assay enabled the detection of pathogen visualization within 30 min without specialized equipment by combining a polyethylene glycol-KOH method for extracting DNA rapidly from tobacco leaves infected with C. kastii, C. fructicola and C. gloeosporioides. Based on these results, the RPA-LFD assay is easy to operate, rapid and equipment independent and is promising for development as a kit to diagnose tobacco anthracnose in resource-limited settings at point-of-care.
期刊介绍:
Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.